Orthogonal Frequency Division Multiplexing Based on Offset QAM

  • Helmut Bölcskei
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


One of the factors determining the performance of wireless Orthogonal Frequency Division Multiplexing (OFDM) systems is time-frequency localization of the transmitter and receiver pulse shaping filters. OFDM based on offset quadrature amplitude modulation (OFDM/OQAM) bypasses a major disadvantage of OFDM based on ordinary QAM, namely the fact that time-frequency well-localized pulse shaping filters are prohibited in the case of critical time-frequency density where spectral efficiency is maximal. In this chapter, we study the problem of pulse shaping filter design for OFDM/OQAM systems and we establish relations between OFDM/OQAM and Wilson and Gabor expansions. We derive general orthogonality conditions for OFDM/OQAM systems and we propose a computationally efficient method for designing time-frequency well-localized OFDM/OQAM pulse shaping filters with arbitrary length and arbitrary overlapping factors. We furthermore introduce biorthogonal frequency division multiplexing based on OQAM (BFDM/OQAM). Finally, design examples are presented to assess the performance of the proposed design algorithm.


Orthogonal Frequency Division Multiplex Spectral Efficiency Orthogonal Frequency Division Multiplex System Gabor Frame Channel Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    [] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data transmission,”Bell Syst. Tech. J. vol. 45,pp. 1775–1796Dec.1966. Google Scholar
  2. [2]
    [] B. R. Saltzberg, “Performance of an efficient parallel data transmission system,”IEEE Trans. Comm. Technol. vol. 15,pp. 805–811Dec.1967. CrossRefGoogle Scholar
  3. [3]
    [] S. B. Weinstein and P. M. Ebert, “Data transmission by frequency division multiplexing using the discrete Fourier transform,”IEEE Trans. Comm. Tech. vol. 19 pp. 628–634Oct.1971. CrossRefGoogle Scholar
  4. [4]
    [] A. Peled and A. Ruiz, “Frequency domain data transmission using reduced computational complexity algorithms,” inProc. IEEE ICASSP80(Denver, CO), pp.964–967 1980. Google Scholar
  5. [5]
    [] L. J. Cimini, “Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing,”IEEE Trans. Comm.vol.33 pp. 665–675July1985. CrossRefGoogle Scholar
  6. [6]
    [] J. S. Chow, J. C. Tu, and J. M. Cioffi, “A discrete multitone transceiver system for HDSL applications,”IEEE J. Sel. Areas Comm.,vol. 9, pp.895–908, Aug.1991. CrossRefGoogle Scholar
  7. [7]
    [] N. J. Fliege, “Orthogonal multiple carrier data transmission,”European Transactions on Telecommunications vol. 3,pp. 225–253May1992. CrossRefGoogle Scholar
  8. [8]
    []W. Y. Zouand Y. Wu, “COFDM: An overview,”IEEE Trans. Broadc., vol.41,pp. 1–8, March1995. CrossRefGoogle Scholar
  9. [9]
    [] B. LeFloch, M. Alard, and C. Berrou, “Coded orthogonal frequency division multiplex,”Proc. of IEEE vol. 83 pp. 982–996 June1995. CrossRefGoogle Scholar
  10. [10]
    [] M. SandellDesign and analysis of estimators for multicarrier modulation and ultrasonic imaging.PhD thesis, Lulea University of Technology, Lulea, Sweden1996. Google Scholar
  11. [11]
    [] R. HaasApplication des transmissions ¨¤ porteuses multiples aux communications radio mobiles.PhD thesis, Ecole Nationale Sup¨¦rieure des T¨¦l¨¦communications Paris, Paris, France, Jan. 1996. Google Scholar
  12. [12]
    [] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital terrestrial TV broadcasting,”IEEE Communications Magazine pp. 100–109 Feb.1995. Google Scholar
  13. [13]
    A. Vahlin and N. Holte, “Optimal finite duration pulses for OFDM,”IEEE Trans. Comm.vol. 4, pp. 10–14, Jan. 1996.CrossRefGoogle Scholar
  14. [14]
    W. Kozek and A. F. Molisch, “Robust and efficient multicarrier communication by nonorthogonal Weyl¡ªHeisenberg systems,”IEEE J. Sel. Areas Comm.vol. 16, pp. 1579–1589, Oct. 1998.CrossRefGoogle Scholar
  15. [15]
    M. Wahlqvist, C. Östberg, J. J. van de Beek, O. Edfors, and P. O. Börjesson, “A conceptual study of OFDM-based multiple access schemes: Part 1 ¡ª Air interface requirements,” Tech. Rep. 117/96, ETSI STC SMG2 meeting no. 18, Helsinki, Finland, May 1996.Google Scholar
  16. [16]
    P. K. Remvik and N. Holte, “Carrier frequency offset robustness for OFDM systems with different pulse shaping filters,” inProc. IEEE GLOBECOM-97(Phoenix, AZ), pp. 11–15, 1997.Google Scholar
  17. [17]
    [] I. DaubechiesTen Lectures on Wavelets.SIAM, 1992.CrossRefGoogle Scholar
  18. [18]
    R. Haas and J. C. Belfiore, “A time-frequency well-localized pulse for multiple carrier transmission,”Wireless Personal Communicationsvol. 5, pp. 1–18, 1997.CrossRefGoogle Scholar
  19. [19]
    M. de CourvilleUtilisation de bases orthogonales pour l’algorithmique adaptive et l’egalisation des syst¨¨mes multiporteuses.PhD thesis, Ecole Nationale Sup¨¦rieure des T¨¦l¨¦communications, Paris, France, Oct. 1996.Google Scholar
  20. [20]
    [] R. Hleiss, P. Duhamel, and M. Charbit, “Oversampled OFDM systems,” inProc. of Int. Conf. on DSP(Santorini, Greece), pp. 329–332, July 1997.Google Scholar
  21. [21]
    [] B. Hirosaki, “An orthogonally multiplexed QAM system using the discrete Fourier transform,”IEEE Trans. Comm.vol. 29, pp. 982–989, July 1981.CrossRefGoogle Scholar
  22. [22]
    B. Hirosaki, S. Hasegawa, and A. Sabato, “Advanced groupband data modem using orthogonally multiplexed QAM technique,”IEEE Trans. Comm.vol. 34, pp. 587–592, June 1986.CrossRefGoogle Scholar
  23. [23]
    C. Roche and P. Siohan, “Bancs de filtres modul¨¦s de type IOTA/EGF: Le cas orthogonal,” Tech. Rep. 5225, CNET, Feb. 1998.Google Scholar
  24. [24]
    P. Siohan and C. Roche, “Analytical design for a family of cosine modulated filter banks,” inProc. IEEE ISCAS-98(Monterey, CA), May 1998.Google Scholar
  25. [25]
    I. Daubechies, S. Jaffard, and J. L. Journ¨¦, “A simple Wilson orthonormal basis with exponential decay,”SIAM J. Math. Anal.vol. 22, pp. 554–572, 1991.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    C. Heil, “A discrete Zak transform,” Tech. Rep. MTR-89W000128, The MITRE Corporation, Dec. 1989.Google Scholar
  27. [27]
    H. Bölcskei and F. Hlawatsch, “Discrete Zak transforms, polyphase transforms, and applications,”IEEE Trans. Signal Processingvol. 45, pp. 851–866, April 1997.CrossRefGoogle Scholar
  28. [28]
    [] T. S. RappaportWireless communications: Principles E4 Practice.Upper Saddle River, New Jersey: Prentice Hall, 1996.Google Scholar
  29. [29]
    P. A. Bello, “Characterization of randomly time-variant linear channels,”IEEE Trans. Comm. Syst.vol. 11, pp. 360–393, 1963.CrossRefGoogle Scholar
  30. [30]
    P. P. VaidyanathanMultirate Systems and Filter Banks.Englewood Cliffs (NJ): Prentice Hall, 1993.Google Scholar
  31. [31]
    H. G. Feichtinger and T. Strohmer, eds.Gabor Analysis and Algorithms: Theory and Applications.Boston (MA): Birkhäuser, 1998.MATHGoogle Scholar
  32. [32]
    P. Auscher, “Remarks on the local Fourier bases,” inWavelets: Mathematics and Applications(J. J. Benedetto and M. W. Frazier, eds.), pp. 203–218, Boca Raton, FL: CRC Press, 1994.Google Scholar
  33. [33]
    S. S. Sandberg and M. A. Tzannes, “Overlapped discrete multitone modulation for high speed copper wire communications,”IEEE J. Sel. Areas Comm.vol. 13, no. 9, pp. 1571–1585, 1995.CrossRefGoogle Scholar
  34. [34]
    C. E. Heil and D. F. Walnut, “Continuous and discrete wavelet transforms,”SIAM Rev.vol. 31, pp. 628–666, Dec. 1989.MathSciNetMATHCrossRefGoogle Scholar
  35. [35]
    A. J. E. M. Janssen, “Duality and biorthogonality for Weyl¡ªHeisenberg frames,”J. Fourier Analysis and Applicationsvol. 1, no. 4, pp. 403–436, 1995.MATHCrossRefGoogle Scholar
  36. [36]
    I. Daubechies, H. J. Landau, and Z. Landau, “Gabor time-frequency lattices and the Wexler-Raz identity,”J. Fourier Analysis and Applicationsvol. 1, no. 4, pp. 437–478, 1995.MathSciNetMATHCrossRefGoogle Scholar
  37. [37]
    A. Ron and Z. Shen, “Frames and stable bases for shift-invariant subspaces of L2(Rd),”Canadian Journal of Mathematicsvol. 47, no. 5, pp. 1051–1094, 1995.MathSciNetMATHCrossRefGoogle Scholar
  38. [38]
    [] A. J. E. M. Janssen, “The duality condition for Weyl¡ªHeisenberg frames,” inGabor Analysis and Algorithms: Theory and Applications(H. G. Feichtinger and T. Strohmer, eds.), pp. 33–84, Boston (MA): Birkhäuser, 1998.CrossRefGoogle Scholar
  39. [39]
    R. D. Koilpillai and P. P. Vaidyanathan, “Cosine-modulated FIR filter banks satisfying perfect reconstruction,”IEEE Trans. Signal Processingvol. 40, pp. 770–783, April 1992.CrossRefGoogle Scholar
  40. [40]
    H. Bölcskei and F. Hlawatsch, “Oversampled cosine modulated filter banks with perfect reconstruction,”IEEE Trans. Circuits and Systems II Special Issue on Multirate Systems Filter Banks Wavelets and Applications vol. 45, pp. 1057–1071, Aug. 1998.MATHGoogle Scholar
  41. [41]
    H. Bölcskei, K. Gröchenig, F. Hlawatsch, and H. G. Feichtinger, “Over-sampled Wilson expansions,”IEEE Signal Processing Letters vol. 4, pp. 106–108, April 1997.Google Scholar
  42. [42]
    H. Bölcskei, H. G. Feichtinger, K. Gröchenig, and F. Hlawatsch, “Discrete-time Wilson expansions,”in Proc. IEEE-SP Int. Sympos. Time-Frequency Time-Scale Analysis(Paris, France), pp. 525–528, June 1996.Google Scholar
  43. [43]
    H. Bölcskei, “Efficient design of pulse shaping filters for OFDM systems,” inProc. SPIE Wavelet Applications in Signal and Image Processing VIIvol. 3813, (Denver (CO)), pp. 625–636, July 1999.Google Scholar
  44. [44]
    M. Zibulski and Y. Y. Zeevi, “Oversampling in the Gabor scheme,”IEEE Trans. Signal Processing vol. 41, pp. 2679–2687, Aug. 1993.MATHCrossRefGoogle Scholar
  45. [45]
    T. Strohmer, “Approximation of dual Gabor frames, window decay, and wireless communications,”Applied and Computational Harmonic Analysisvol. 11no. 2, pp. 243–262, 2001.MathSciNetMATHCrossRefGoogle Scholar
  46. [46]
    A. J. E. M. Janssen and H. Bölcskei, “Equivalence of two methods for constructing tight Gabor frames,”IEEE Sig. Proc. Lettersvol. 7, pp. 79–82, April 2000.CrossRefGoogle Scholar
  47. [47]
    H. Bölcskei, “A necessary and sufficient condition for dual Weyl¡ªHeisenberg frames to be compactly supported,”J. Fourier Anal. Appl.vol. 5, no. 5, pp. 409–419, 1999.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Helmut Bölcskei

There are no affiliations available

Personalised recommendations