Nonlinear Duality Between Elastic Waves and Quasi-particles

  • G. A. Maugin
  • C. I. Christov


Some systems governed by a set of partial differential equations present the necessary ingredients (nonlinearity and dispersion) in appropriate doses so as to become the arena of the propagation and interactions of solitary waves. In general such systems are not exactly integrable in the sense of soliton theory. But some of their nearly solitonic solutions can nonetheless be apprehended as quasi-particles in a certain dynamics that depends on the original system. The present chapter considers this reductive representation of nonlinear dynamical solutions for physical systems issued from solid mechanics, and more particularly elasticity with a microstructure of various origin. A whole collection of “point-mechanics” emerges thus, among which the simpler ones are Newton's and Lorentz-Einstein’s. This quasi-particle representation is intimately related to the existence of conservation laws for the system under study and the recent recognition of the essential role played by fully material balance laws in the continuum mechanics of inhomo-geneous and defective elastic bodies.


Solitary Wave Nonlinear Wave Canonical Momentum Wave Momentum Material Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. C. Eringen and G. A. Maugin, Electrodynamics of Continua Vol. I,Springer-Verlag, New York, 1990.Google Scholar
  2. 2.
    G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, NewYork, 1974.MATHGoogle Scholar
  3. 3.
    A. C. Newell, Solitons in Mathematics and Physics, S.I.A.M., Philadelphia,1985.Google Scholar
  4. 4.
    P. G. Drazin and R. S. Johnson, Solitons: An Introduction, CambridgeUniversity Press, Cambridge, U.K., 1989.MATHGoogle Scholar
  5. 5.
    C. Rebbi and G. Soliani (Eds), Solitons and Particles, World Scientific,Singapore, 1984.Google Scholar
  6. 6.
    P. H. Holland, The Quantum Theory of Motion (An Account of thede Broglie-Bohm Interpretation of QuantumMechanics), CambridgeUniversity Press, Cambridge, U.K., 1993.MATHGoogle Scholar
  7. 7.
    G. A. Maugin, J. Phys. Mech. Solids, 40 (1992), 1543.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    G. A. Maugin, Material Inhomogeneities in Elasticity, Chapman and Hall, London, 1993.MATHGoogle Scholar
  9. 9.
    G. A. Maugin, in: Mathematical and Numerical Aspects of Wave Propagation, R. E. Kleinman, ed., 338, SIAM, Philadelphia, 1993.MATHGoogle Scholar
  10. 10.
    G. A. Maugin, in: Nonlinear Waves in Solids, A. Jeffrey and Ju. Engel-brecht,eds., 109, Springer-Verlag,Vienna,1994.Google Scholar
  11. 11.
    G. A. Maugin, in: E.S. Suhubi and Continuum Mechanics, E. Inan, ed.,Bull. Techn. Univ. Istanbul, 47 (1994), 23.MathSciNetMATHGoogle Scholar
  12. 12.
    G. A. Maugin, in: Nonlinear Waves in Solids (IUTAM Symposium,Victoria, 1993), J. Wegner and F. Norwood,eds., 104, Vol. AMR No.137, A.S.M.E., New York, 1994.Google Scholar
  13. 13.
    G. A. Maugin, in: Computational Fluid Mechanics, Volume in the Hon-ourof K. Roesner, D. Leutloff and R. C. Srivastava, eds., 269, Springer-Verlag,Berlin, 1995.Google Scholar
  14. 14.
    R. Courant and K. O. Friedrichs, Supersonic Flows and Shock waves,Wiley-Interscience, New York, 1948.MATHGoogle Scholar
  15. 15.
    E. Godlewski and P.-A. Raviart, Hyperbolic Systems of ConservationLaws, Springer-Verlag, Paris, 1989.Google Scholar
  16. 16.
    A. Jeffrey and T. Taniuti, Nonlinear Wave Propagation with Applications to Physics andMagnetohydrodynamics, Academic Press, NewYork, 1963.Google Scholar
  17. 17.
    J. Mandel and L. Brun (Eds), Mechanical Waves in Solids, Springer-Verlag,Vienna, 1975.Google Scholar
  18. 18.
    J. Bazer and W. B. Ericson, Arch. Rat Mech. Anal, 55 (1974), 124.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    G. A. Maugin, Int. J. Engng. Sci, 19 (1981), 321.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    G. A. Maugin, Continuum Mechanics of Electromagnetic Solids, North-Holland,Amsterdam, 1988.Google Scholar
  21. 21.
    W. Ani and G. A. Maugin, Zeit. Angew. Math. Phys., 39 (1988), 277.MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    G. A. Maugin, J. Pouget, R. Drouot and B. Collet, Nonlinear ElectromechanicalCouplings, J. Wiley, New York,1992.MATHGoogle Scholar
  23. 23.
    P. D. Lax, Hyperbolic Systems of Conservation Laws and Mathematical Theory of Shock Waves, SIAM, Philadelphia, 1973.MATHGoogle Scholar
  24. 24.
    W. D. Hayes, in: Nonlinear Waves, S. Leibovich and A. R. Seebass, eds.,1, Cornell University Press, Ithaca, N.Y., 1974.Google Scholar
  25. 25.
    G. A. Maugin, Nonlinear Electromechanical Effects and Applications, Aseries of Lectures, World Scientific,Singapore, 1985.Google Scholar
  26. 26.
    G. A. Maugin and C. Trimarco, Acta Mechanica, 94 (1992), 1.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    D. E. Soper, Classical Field Theory, J. Wiley, New York, 1976.Google Scholar
  28. 28.
    J. Rzewuski, Field Theory, Vol. I, P.W.N., Warsaw, 1964.Google Scholar
  29. 29.
    W. Brenig, Zeit Phys., 143 (1955), 168.CrossRefGoogle Scholar
  30. 30.
    G. A. Maugin and C. Trimarco, Int. J. Engng. Sci, 33 (1995), 1663.MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    D. C. Fletcher, Arch. Rat. Mech. Anal, 60 (1976), 329.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    E. S. Suhubi, Int. J. Engng. Sci., 27 (1989), 441.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    V. L. Gurevich and A. Thellung, Phys. Rev., B42 (1990), 7345.CrossRefGoogle Scholar
  34. 34.
    N. Chien, T. Honein and G. Herrmann, Int. J. Solids Structures, 30(1993), 3321.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    V. I. Erofeev and A. I. Potatpov, in: Nonlinear World, Proc. Phys.,Kiev, 1991, 1197.Google Scholar
  36. 36.
    V. I. Erofeev and A. I. Potapov, Int. J. Nonlinear Mech., 28 (1993),483.MATHCrossRefGoogle Scholar
  37. 37.
    T. R. Kane and D. A. Levinson, Trans. ASME. J. Appl. Mech., 55(1988), 711.MATHCrossRefGoogle Scholar
  38. 38.
    B. Tabarrok, C. Tezer and M. Styllianou, Acta Mechanica, 107 (1994),137.MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    G. A. Maugin, Proc. Estonian Acad. Sci., 44 (1995), 40.MathSciNetMATHGoogle Scholar
  40. 40.
    C. I. Christov and G. A. Maugin, in: Coherent Structures in Physics andBiology, M. Remoissenet and M.Peyrard, eds., 209, Springer-Verlag,Berlin, 1991.Google Scholar
  41. 41.
    C. I. Christov and G. A. Maugin, in: Advances in Nonlinear Acoustics,H. Hobaeck, ed., 457, World Scientific, Singapore, 1993, 457.Google Scholar
  42. 42.
    C. I. Christov and G. A. Maugin, in: Nonlinear Waves in Solids, J.Wegner and F. Norwood, eds., 374, Vol. AMR No. 137, A.S.M.E., NewYork, 1994.Google Scholar
  43. 43.
    J. S. Russell, in: Report of the 14th Meeting (1844) of the British Association for the Advancement of Science, 311, B.A.A.S., York, 1845.Google Scholar
  44. 44.
    J. V. Boussinesq, C. R. Acad. Sci. Paris, 72 (1871), 755.MATHGoogle Scholar
  45. 45.
    D. J. Korteweg and G. de Vries, Phil Mag. Ser. 5., 39 (1895), 422.MATHCrossRefGoogle Scholar
  46. 46.
    N. J. Zabuski and M. D. Kruskal, Phys. Rev. Lett, 15 (1965), 57.Google Scholar
  47. 47.
    M. Kruskal, in: Nonlinear Evolution Equations Solvable by the SpectralTransform, F. Calogero, ed., 1, Pitman, London, 1978.Google Scholar
  48. 48.
    V. E. Zakharov and K. Shabat, Sov. Phys. J.E.T.P., 37 (1973), 823.Google Scholar
  49. 49.
    F. Calogero and A. Degasperis, Spectral Transform and Solitons: Tools to Solve and Investigate Nonlinear Evolution Equations, Vol. I, North-Holland,Amsterdam, 1982.MATHGoogle Scholar
  50. 50.
    M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform,SIAM, Philadelphia, 1981.MATHGoogle Scholar
  51. 51.
    A. S. Fokas, Lett. Math. Phys., 5 (1979), 467.MathSciNetCrossRefGoogle Scholar
  52. 52.
    M. Jammer, The Philosophy of Quantum Mechanics, Wiley-Interscience,New York, 1974.Google Scholar
  53. 53.
    R. M. Miura, in: Nonlinear Waves, S. Leibovich and A. R. Seebass, eds.,212, Cornell University Press, Ithaca, N.Y., 1974.Google Scholar
  54. 54.
    P. L. Bathnagar, Nonlinear Waves in One-dimensional Systems, Oxford University Press, Oxford, U.K., 1979.Google Scholar
  55. 55.
    I. L. Bogolubsky, Comp. Phys. Commun., 13 (1977), 149.CrossRefGoogle Scholar
  56. 56.
    L. Iskander and P. C. Jain, Proc. Indian Acad. Sci., Math. Sci., 89 (1980), 171.Google Scholar
  57. 57.
    V. S. Manoranjan, T. Ortega and J. M. Sanz-Serna, J. Math. Phys., 29(1988), 1964.MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems,Chapman and Hall, London, 1994.MATHGoogle Scholar
  59. 59.
    P. L. Christiansen and O. H. Olsen, Wave Motion, 4 (1982), 163.MATHCrossRefGoogle Scholar
  60. 60.
    Z. Wesolowski, J. Engng. Math. 17 (1983), 315.MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    J. Frenkel and T. Kontorova, Phys. Sowjet Union, 13 (1938), 1.MATHGoogle Scholar
  62. 62.
    F. Kh. Abdullaev and P. K. Khabibullaev, Dynamics of Solitons in In-homogeneous Condensed Matter, F.A.N., Tashkent, Uzb.S.S.R. (in Russian),1986.Google Scholar
  63. 63.
    Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys., 61 (1989), 763.CrossRefGoogle Scholar
  64. 64.
    G. A. Maugin and H. Hadouaj, Phys. Rev., B44 (1991), 1266.Google Scholar
  65. 65.
    V. E. Zahkarov, Sov. Phys. J.E.T.P., 35 (1972), 908.Google Scholar
  66. 66.
    G. A. Maugin and A. Miled, Phys. Rev., B33, (1986) 4830.CrossRefGoogle Scholar
  67. 67.
    J. Pouget and G. A. Maugin, Phys. Rev., B30, (1984) 5304.Google Scholar
  68. 68.
    J. Pouget and G. A. Maugin, Phys. Rev., B31, (1985) 4633.CrossRefGoogle Scholar
  69. 69.
    G. A. Maugin and A. Miled, Int. J. Engng. Sci., 24 (1986), 1477.MathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    J. Pouget and G. A. Maugin, J. Elasticity, 22 (1989), 135.MathSciNetMATHCrossRefGoogle Scholar
  71. 71.
    J. Pouget and G. A. Maugin, J .Elasticity, 22 (1989), 157.MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    B. A. Malomed, Physica, D15 (1985), 385.MathSciNetMATHGoogle Scholar
  73. 73.
    J. Pouget and G. A. Maugin, Phys.Lett., A109 (1985), 389.CrossRefGoogle Scholar
  74. 74.
    Yu. S. Kivshar and B. A. Malomed, Phys.Rev., B42, (1990) 8561.CrossRefGoogle Scholar
  75. 75.
    A. Fomethe and G. A. Maugin, Preprint, U.P.M.C, Paris, 1995.Google Scholar
  76. 76.
    G. A. Maugin, in: Nonclassical Continuum Mechanics: Abstract Techniques and Applications, R.Knops, ed.,272, Cambridge University Press, Cambridge, U.K., 1987.Google Scholar
  77. 77.
    J. Pouget, in: Physical Properties and Thermodynamical Behaviour of Minerals, E. K. Salje, ed., 359, Riedel,Dordrecht, 1988.Google Scholar
  78. 78.
    C. I. Christov, G. A. Maugin and M. G. Velarde, Phys.Rev., E 54(1996), 3621.Google Scholar
  79. 79.
    G. A. Maugin and S. Cadet, Int. J.Engng.Sci., 29 (1991), 243.MathSciNetMATHCrossRefGoogle Scholar
  80. 80.
    G. A. Maugin, Appl.Mech.Rev., 48 (1995), 213.MathSciNetCrossRefGoogle Scholar
  81. 81.
    C. I. Christov and G. A. Maugin, J. Comp. Phys., 116 (1995), 39.MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    C. I. Christov and M. G. Velarde, Bifurcation and Chaos, 4 (1994),1095.MATHCrossRefGoogle Scholar
  83. 83.
    T. Kawahara, J.Phys.Soc.Japan, 13 (1972), 260.Google Scholar
  84. 84.
    S. K. Turitsyn, Phys.Rev., E47 (1993), R769.MathSciNetCrossRefGoogle Scholar
  85. 85.
    G. A. Maugin, H. Hadouaj and B. A. Malomed, Phys.Rev., B45 (1992),9688.CrossRefGoogle Scholar
  86. 86.
    H. Hadouaj, B. A. Malomed and G. A. Maugin, Phys.Rev., A44 (1991),3922.Google Scholar
  87. 87.
    H. Hadouaj, B. A. Malomed and G. A. Maugin, Phys.Rev., A44 (1991),3932.MathSciNetCrossRefGoogle Scholar
  88. 88.
    H. Hadouaj and G. A. Maugin, Wave Motion, 16 (1992), 115.MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    G. A. Maugin, H. Hadouaj and B. A. Malomed, Le Matematiche, XLVI(1991), 253.Google Scholar
  90. 90.
    L. A. Ostrovskii and A. M. Suttin, P.M.M., 41 (1977), 543.Google Scholar
  91. 91.
    A. M. Samsonov, in: Frontiers of Nonlinear Acoustics, M. F. Hamiltonand D. T. Blackstock, eds., 583, Elsevier,London, 1990.Google Scholar
  92. 92.
    M. P. Soerensen, P. L. Christiansen and P. S. Lomdahl, J. Acoust. Soc.Amer., 76 (1984), 871.MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    P. A. Clarkson, J. J. LeVeque and R. Saxton, Stud. Appl. Math., 75(1986), 95.MathSciNetMATHGoogle Scholar
  94. 94.
    A. S. Kovalev and E. S. Syrkin, Surface Solitons in Nonlinear ElasticMedia, Surf. Sci., 346 (1995), 337-345.CrossRefGoogle Scholar
  95. 95.
    J. Pouget, M. Remoissenet and J. M. Tamga, Phys. Rev., B47 (1993).Google Scholar
  96. 96.
    G. A. Maugin, in: Trends in Applications of Pure Mathematics to Mechanics,E. Kroner and K. Kirchgassner, eds., 195, Springer-Verlag,Berlin, 1986.Google Scholar
  97. 97.
    R. D. Richtmayer and K. W. Morton, Difference Methods for Initial Value Problems, Second Edition,Interscience, New York, 1967.Google Scholar
  98. 98.
    C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, N.Y., 1987.Google Scholar
  99. 99.
    J. P. Boyd, Chebishev and Fourier Spectral Methods, Springer-Verlag,N.Y., 1989.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York  2002

Authors and Affiliations

  • G. A. Maugin
    • 1
  • C. I. Christov
    • 2
  1. 1.Laboratoire de Modélisation en MécaniqueUniversité Pierre-et-Marie CurieParis Cedex 05France
  2. 2.Department of MathematicsUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations