Energy Demand Forecasting

  • Subhes C. BhattacharyyaEmail author


This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It covers both simple approaches based on indicators and more sophisticated approaches using econometric methods, end-use method and other techniques. The chapter builds on the materials presented in Chaps.  3 and  4 and explains how demand analysis tools are extended to make forecasts for the future.


Forecasting Simple indicators Alternative approaches Models 


  1. Al-Saba, T., & El-Amin, I. (1999). Artifical neural networks as applied to long-term demand. Artifical Intelligence and Engineering, 13, 189–197.CrossRefGoogle Scholar
  2. Amber, K. P., Ahmad, R., Aslam, M. W., Kousar, A., Usman, M., & Khan, M. S. (2018, May 25). Intelligent techniques for forecasting electricity consumption of buildings, energy. Retrieved from ISSN 0360-5442CrossRefGoogle Scholar
  3. APERC. APEC energy demand and supply outlook (6th ed.). Annex1: Modelling assumptions & methodologies, Asia Pacific Energy Research Centre, Institute of Energy Economics of Japan, Tokyo. Retrieved from
  4. Armstrong, J. S. (Ed.). (2001). Principles of Forecasting: A handbook for researchers and practitioners. Norwell, MA: Kluwer Academic.Google Scholar
  5. Bataille, C., Jaccard, M., Nyboer, J., & Rivers, N. (2006, November). Towards general-equilibrium in a technology-rich model with empirically estimated behaviour parameters. The Energy Journal, Special Issue, 93–112.Google Scholar
  6. Benichou, L., & Mayr, S. (2014). Rogeaulito: A world energy scenario modelling tool for transparent energy system thinking. Frontier of Energy Research, 1,
  7. Bentzen, J., & Linderoth, H. (2001, June). Has the of energy projections in OECD countries improved since the 1970s? OPEC Review, 105–116.Google Scholar
  8. Bhattacharyya, S. C., & Thanh, L. T. (2004). Short term electric load using an artificial neural network: Case of Northern Vietnam. International Journal of Energy Research, 28(5), 463–472.CrossRefGoogle Scholar
  9. Bhattacharyya, S. C., & Timilsina, G. R. (2009, March 2). Energy demand models for policy formulation: A comparative study of energy demand models. World Bank Policy Research Working Paper WPS4866.Google Scholar
  10. BP Statistical Review of World Energy. (2017). BP plc, London.Google Scholar
  11. Codoni, R., Park, H. C., & Ramani, K. V. (1985). Integrated energy planning—A manual. Kuala Lumpur: Asia Pacific Development Centre.Google Scholar
  12. Craig, P. P., Gadgil, A., & Koomey, J. G. (2002). What can history teach us? A retrospective examination of long-term energy forecasts for the United States. Annual Review of Energy and the Environment, 27, 83–118.CrossRefGoogle Scholar
  13. EIA. (2017). Annual energy outlook retrospective review: Evaluation of 2016 and prior reference case projections. US Department of Energy, Washington, DC. Retrieved June 2, 2018, from
  14. Ghanadan, R., & Koomey, J. G. (2005). Using energy scenarios to explore alternative energy pathways in California. Energy Policy, 33, 1117–1142.CrossRefGoogle Scholar
  15. Heaps, C. (2002). Integrated energy-environment modelling and LEAP, SEI. Retrieved from
  16. Hippert, H. S., Pedreira, C. E., & Souza, R. C. (2001). Neural networks for short-term load forecasting: A review and evaluation. IEEE Transactions on Power Systems, 16(1), 44–55.CrossRefGoogle Scholar
  17. IAEA. (2006). Model for analysis of energy demand, (MAED-2), Manual 18. Vienna: International Atomic Energy Agency.Google Scholar
  18. Jefferson, M. (2000). Long-term energy scenarios: The approach of the World Energy Council. International Journal of Global Warming Issues, 3(1–3), 277–284.CrossRefGoogle Scholar
  19. Koomey, J. G. (2002). From my perspective: Avoiding “the Big Mistake” in technology adoption. Technological Forecasting and Social Change, 69, 511–518.CrossRefGoogle Scholar
  20. Koopmans, C. C., & te Velde, D. W. (2001). Bridging the energy efficiency gap: using bottom-up information in a top-down energy model. Energy Economics, 23, 57–75.CrossRefGoogle Scholar
  21. Labys, W. C., & Asano, H. (1990). Process models, special issue of energy. Energy, 15(3&4), 237–248.CrossRefGoogle Scholar
  22. Lapillonne, B. (1978). MEDEE-2: A model for long-term energy demand evaluation, RR-78-17. International Institute for Applied Systems Analysis (IIASA), Austria. Retrieved from
  23. Leydon, K., Decker, M., & Waterlaw, J. (1996). European energy to 2020: A scenario. Directorate General For Energy (DG XVII), European Commission, Brussels. Retrieved from
  24. Lipinsky, A. (1990). Introduction, Section 2, Demand forecasting methodologies, special issue of energy. Energy, 15(3&4), 207–211.CrossRefGoogle Scholar
  25. Miller, R., & Blair, P. (1985). Input output analysis: Foundations and extensions. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  26. Munasinghe, M., & Meier, P. (1993). Energy policy analysis and modeling. London: Cambridge University Press.CrossRefGoogle Scholar
  27. Paltsev, S. (2016, December 28). Energy scenarios: The value and limits of scenario analysis. WIREs Energy and Environment, Scholar
  28. Reister, D. B. (1990). The hybrid approach to demand modeling. Special issue of Energy, Energy, 15(3&4), 249–260.Google Scholar
  29. Shell. (2003). Scenarios: An explorer’s guide. Shell International, The Netherlands. Retrieved from
  30. Shell. (2018). Shell Scenarios: Sky—Meeting the goals of the Paris agreement. Shell International. Retrieved June 2, 2018, from
  31. Sun, J. W. (2001). Energy demand in the fifteen European Union countries by 2010: A model based on the decomposition approach. Energy, 26(6), 549–560.CrossRefGoogle Scholar
  32. Wandji, Y. D. F., & Bhattacharyya, S. C. (2017). Evaluation of economic rent from hydroelectric power developments: Evidence from Cameroon. The Journal of Energy and Development, 42(1–2), 239–270.Google Scholar
  33. WEC. (2016). The grand transition. World Energy Council (in collaboration with Accenture Strategy and Paul Scherrer Institute), London.Google Scholar
  34. Zhang, Q., Hasanbeigi, A., Price, L., Lu, H., & Arens, M. (2016). A bottom-up energy efficiency improvement road map for China’s iron and steel industry up to 2050. Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, USA. Retrieved from

Further Reading

  1. Chakravorty, U., et al. (2000). Domestic Demand for Petroleum in OPEC Countries. OPEC Review.Google Scholar
  2. Dahl, C. (1994, Spring). A Survey of oil product demand elasticities for developing countries. OPEC Review, 47–85.CrossRefGoogle Scholar
  3. Moroney, J. R. (Ed.). (1997). Advances in the economics of energy and resources (Vol. 10). London: Energy Demand and Supply, Jai Press.Google Scholar
  4. Sterner, T. (Ed.). (1992). International energy economics. London: Chapman and Hall.Google Scholar
  5. Sun, J. W. (1998). Changes in energy consumption and energy intensity: A complete decomposition model. Energy Economics, 20(1), 85–100.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Energy and Sustainable DevelopmentDe Montfort UniversityLeicesterUK

Personalised recommendations