Exploring Challenging Environments: Contextual Research in the Car and the Factory Through an HCI Lens

  • Astrid Weiss
  • Alexander Meschtscherjakov
  • Roland Buchner
  • Ewald Strasser
  • Patricia M. Kluckner
  • Sebastian Osswald
  • Nicole Mirnig
  • David Wilfinger
  • Nicole Perterer
  • Petra Sundstroem
  • Arno Laminger
  • Manfred Tscheligi

Abstract

Nontraditional environments offer a variety of methodological challenges when exploring cooperation under very specific contextual conditions. We understand contexts as challenging when they exhibit very specific/unique characteristics that need to be explored beyond traditional and already better-understood working/office settings. Moreover, these challenging environments are contexts in which human-human interaction mediated by computing systems and human-machine collaboration is hard to observe. In this paper, we focus on two challenging environments: the highly context-dependent automotive environment and the complex context of a semiconductor factory. Both contexts offer potential in a variety of ways for novel computer-supported cooperative work research, such as driver/codriver cooperation and operator-robot cooperation. In this book chapter, two exemplary contexts “car” and “factory” will be characterized in terms of (1) research challenges posed by the context, (2) performed exploratory studies, and (3) methodological implications for the two exemplary contexts, as well as for CSCW and HCI research practices in general.

References

  1. Alt, F., Kern, D., Schulte, F., Pfleging, B., Shirazi, A. S., & Schmidt, A. (2010). Enabling micro-entertainment in vehicles based on context information. In Proceedings of the 2nd international conference on automotive user interfaces and interactive vehicular applications, Automotive UI ’10 (pp. 117–124). New York: ACM.CrossRefGoogle Scholar
  2. Auramäki, E., Robinson, M., Aaltonen, A., Kovalainen, M., Liinamaa, A., & Tuuna-Väiskä, T. (1996, November). Paperwork at 78kph. In Proceedings of the 1996 ACM conference on computer supported cooperative work (pp. 370–379). ACM.Google Scholar
  3. Ballas, J., Heitmeyer, C., & Perez, M. (1992). Direct manipulation and intermittent automation in advanced cockpits. Technical report, DTIC Document.Google Scholar
  4. Bellotti, F., Gloria, D., Montanari, R., Dosio, N., & Morreale, D. (2005). Comunicar: Designing a multimedia, context-aware human-machine interface for cars. Cognition, Technology and Work, 7(1), 36–45.CrossRefGoogle Scholar
  5. Ben-Elia, E., & Ettema, D. (2011). Changing commuters’ behavior using rewards: A study of rush-hour avoidance. Transportation Research Part F: Traffic Psychology and Behaviour, 14(5), 354–368.CrossRefMATHGoogle Scholar
  6. Beyer, H., & Holtzblatt, K. (1998). Contextual design: Defining customer-centered systems. San Francisco: Morgan Kaufmann Publishers. ISBN 1558604111.Google Scholar
  7. Blomberg, J., Giacomi, J., Mosher, A., & Swenton-Wall, P. (1993). Ethnographic field methods and their relation to design. In D. Dchuler & A. Namioka (Eds.), Participatory design: Principles and practices. Hillsdale: Erlbaum.Google Scholar
  8. Brooks, R. (1991). Comparative task analysis: An alternative direction for human-computer interaction science. In J. Carroll (Ed.), Designing interaction: Psychology at the human computer interface. Cambridge: Cambridge University Press.Google Scholar
  9. Brown, B., & Laurier, E. (2012). The normal natural troubles of driving with GPS. In Proceedings of CHI 2012 (pp. 1621–1630). New York: ACM.Google Scholar
  10. Buchner, R., Wurhofer, D., Weiss, A., & Tscheligi, M. (2012). User experience of industrial robots over time. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction (pp. 115–116). New York: ACM.Google Scholar
  11. Buchner, R., Wurhofer, D., Weiss, A., & Tscheligi, M. (2013a). Robots in time: How user experience in human-robot interaction changes over time. In Proceedings of international conference on social robotics (pp. 138–147). Bristol: ICSR.Google Scholar
  12. Buchner, R., Kluckner, P. K., Weiss, A., & Tscheligi, M. (2013b). Assisting maintainers in the semiconductor factory: Iterative co-design of a mobile interface and a situated display. In Proceedings of the 12th international conference on mobile and Ubiquitous Multimedia (MUM ’13). New York: ACM.Google Scholar
  13. Chamberlain, A., Crabtree, A., Rodden, T., Jones, M., & Rogers, Y. (2012). Research in the wild: Understanding ‘in the wild’ approaches to design and development. In Proceedings of the designing interactive systems conference, DIS ’12 (pp. 795–796). New York: ACM.CrossRefGoogle Scholar
  14. Crabtree, A. (1998). Ethnography in participatory design. In Proceedings of participatory design conference (PDC’98) (pp. 93–105). Palo Alto: CPSR.Google Scholar
  15. Crabtree, A., Rodden, T., Tolmie, P., & Button, G. (2009). Ethnography considered harmful. In Proceedings of the 27th international conference on human factors in computing systems, CHI ’09 (pp. 879–888). New York: ACM.CrossRefGoogle Scholar
  16. D’Souza, M., & Greenstein, J. S. (2003, October). Listening to users in a manufacturing organization: A context-based approach to the development of a computer-supported collaborative work system. International Journal of Industrial Ergonomics, 32(4), 251–264.Google Scholar
  17. Dey, A. K. (2001, February). Understanding and using context. Personal and Ubiquitous Computing, 5(1), 4–7.Google Scholar
  18. Dourish, P. (2006). Implications for design. In Proceedings of CHI’06 (pp. 541–550). Montréal, Canada. New York: ACM Press.Google Scholar
  19. Esbjörnsson, M., Juhlin, O., & Weilenmann, A. (2007). Drivers using mobile phones in traffic: An ethnographic study of interactional adaptation. International Journal of Human-Computer Interaction, 22(1–2), 37–58.CrossRefGoogle Scholar
  20. Fallman, D. (2003). Enabling physical collaboration in industrial settings by designing for embodied interaction CLIHC ’03. In Proceedings of the Latin American conference on human-computer interaction (pp. 41–51). New York: ACM.CrossRefGoogle Scholar
  21. Fetterman, D. M. (1998). Ethnography: Step by step (2nd ed.). Thousand Oaks: Sage Publications.Google Scholar
  22. Forlizzi, J., Barley, W. C., & Seder, T. (2010). Where should I turn: Moving from individual to collaborative navigation strategies to inform the interaction design of future navigation systems. In Proceedings of CHI 2010 (pp. 1261–1270). New York: ACM.Google Scholar
  23. Fuchsberger, V., Murer, M., Aslan, I., Meschtscherjakov, A., Tscheligi, M., Sundström, P., & Petrelli, D. (2014). Contextual constraints: Consequences for interaction design. Workshop at DIS’14: Conference on designing interactive systems, Vancouver.Google Scholar
  24. Geiser, G. (1985). Man machine interaction in vehicles. ATZ, 87, 74–77.Google Scholar
  25. Gellatly, A., Hansen, C., Highstorm, M., & Weiss, J. (2010). Journey: General motors’ move to incorporate contextual design into its next generation of automotive HCI design. In Proceedings of AUI 2010. New York: ACM.Google Scholar
  26. Greenberg, S., & Buxton, B. (2008). Usability evaluation considered harmful (some of the time). In Proceedings of the twenty-sixth annual SIGCHI conference on human factors in computing systems (pp. 111–120). New York: ACM.CrossRefGoogle Scholar
  27. Gridling, N., Sundstroem, P., Meschtscherjakov, A., Wilfinger, D., & Tscheligi, M. (2013). Come drive with me: An ethnographic study of driver-passenger pairs to inform future in-car assistance. In CSCW ’13 proceedings of the ACM 2013 conference on computer supported cooperative work companion. New York: ACM.Google Scholar
  28. Hampton, P., & Langham, M. (2005). A contextual study of police car telematics: The future of in-car information systems. Ergonomics, 48(2), 109–118.CrossRefGoogle Scholar
  29. Hanowski, R. J., Olson, R. L., Hickman, J. S., & Dingus, T. A. (2006). The 100-car naturalistic driving study: A descriptive analysis of light vehicle-heavy vehicle interactions from the light vehicle driver’s perspective. Technical report, Virginia Tech Transportation Institute.Google Scholar
  30. Hayes, G. R. (2011, July). The relationship of action research to human-computer interaction. ACM Transactions on Computer-Human Interaction, 18, 1–20.Google Scholar
  31. Heyer, C. (2010). Investigations of Ubicomp in the oil and gas industry. In Proceedings of the 12th ACM international conference on Ubiquitous computing (pp. 61–64). New York: ACM.CrossRefGoogle Scholar
  32. Heyer, C., Wagner, I., Tellioglu, H., Balka, E., Simone, C., & Ciolfi, L. (Eds.). (2009). High-Octane Work: The oil and gas workplace ECSCW 2009 (pp. 363–382). London: Springer.Google Scholar
  33. Hoffman, G., Gal-Oz, A., Shlomi, D., & Zuckerman, O. (2013). In-car game design for children: Child vs. parent perspective. In Proceedings of the 12th international conference on interaction design and children (pp. 112–119). New York: ACM.CrossRefGoogle Scholar
  34. Hutchins, E., & Klausen, T. (1996). Distributed cognition in an airline cockpit. In Cognition and communication at work (pp. 15–34). New York: Cambridge University Press.CrossRefGoogle Scholar
  35. Inbar, O., & Tractinsky, N. (2011). Make a trip an experience: Sharing in-car information with passengers. In Proceedings of CHI 2011 (pp. 1243–1248). New York: ACM.Google Scholar
  36. Johnson, R., Rogers, Y., van der Linden, J., & Bianchi-Berthouze, N. (2012). Being in the thick of in-the-wild studies: The challenges and insights of researcher participation. In Proceedings of the 2012 ACM annual conference on human factors in computing systems, CHI ’12 (pp. 1135–1144). New York: ACM.CrossRefGoogle Scholar
  37. Juhlin, O. (1999). Traffic Behavior as social interaction – Implications for the design of the artificial driver. In Proceedings of ITS 1999. Crowthorne: Transport Research Laboratory.Google Scholar
  38. Kern, D., & Schmidt, A. (2007). Gas station flash survey – A method for interviewing drivers. In T. Paul-Stueve (Ed.), Mensch & Computer 2007 Workshopband. Weimar: Verlag der Bauhaus-Universität Weimar.Google Scholar
  39. Kluckner, P. M., Buchner, R., Weiss, A., & Tscheligi, M. (2012). Repair now: Collaboration between maintainers, operators and equipment in a cleanroom. In Proceedings of the ACM conference on computer supported cooperative work, CSCW ’12. New York: ACM.Google Scholar
  40. Kluckner, P. M., Buchner, R., Weiss, A., & Tscheligi, M. (2013). Collaborative reporting tools: An analysis of maintenance activities in a semiconductor factory. In Proceedings of the 2013 international conference on collaboration technologies and systems (CTS) (pp. 508–515). Piscataway: IEEE.CrossRefGoogle Scholar
  41. Kristensen, M., Kyng, M., & Palen, L. (2006). Participatory design in emergency medical service: Designing for future practice. In Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’06 (pp. 161–170). New York: ACM.CrossRefGoogle Scholar
  42. Law, E. L.-C., Bevan, N., Christou, G., Springett, M., & Lárusdóttir, M. (Eds.). (2008). Proceedings of the international workshop on meaningful measures: Valid user experience measurement (VUUM), Reykjavik.Google Scholar
  43. Lin, C.-H., Hwang, S.-L., & Min-Yang Wang, E. (2009). Design for usability on supply chain management systems implementation. Human Factors and Ergonomics in Manufacturing & Service Industries, 19, 378–403.CrossRefGoogle Scholar
  44. Magnusson, C., Larsson, A., Warell, A., & Eftring, H. (2011). Key scenarios, contextual walkthrough and context trails – Tools for better and more accessible mobile designs. In Proceedings of the 13th IFIP TC13 conference on human-computer interaction, INTERACT 2011, Workshop on Mobile Accessibility, Lisbon.Google Scholar
  45. Martin, N., Sprague, M.A., Wall, P., Watts-Perotti, J. (2007). Giving voice to print production facility workers: Representing actual work practices in the streamlining of a labor intensive production print job. In Ethnographic Praxis in industry conference proceedings 2007 (1), pp. 163–180. Keystone.Google Scholar
  46. Mechtscherjakov, A., Kluckner, P., Pöhr, F., Reitberger, W., Weiss, A., Tscheligi, M., Hohenwarter, K., & Oswald, P. (2011). Ambient persuasion in the factory: The case of the operator guide. In Advanced semiconductor manufacturing conference (ASMC), 2011 22nd annual IEEE/SEMI (pp. 1–6). Piscataway: IEEE.CrossRefGoogle Scholar
  47. Meschtscherjakov, A., Reitberger, W., Poehr, F., & Tscheligi, M. (2010). The operator guide: An ambient persuasive interface in the factory. In Proceedings of the AmI, 2010 (pp. 117–126). Berlin Heidelberg: Springer.Google Scholar
  48. Meschtscherjakov, A., Wilfinger, D., Osswald, S., Gridling, N., & Tscheligi, M. (2012). Trip experience sampling: Assessing driver experience. In The field. Proceedings of the 3rd international conference on automotive user interfaces and interactive vehicular applications. AutomotiveUI ’12. New York: ACM.Google Scholar
  49. Millen, D. R. (2000, August). Rapid ethnography, time deepening strategies for HCI field research. In Conference proceedings on designing interactive systems: Processes, practices, methods, and techniques (pp. 280–286). New York: ACM.Google Scholar
  50. Nardi, B. (1992, August 4–8). Studying context: A comparison of activity theory, situated action models and distributed cognition. In Proceedings East–West conference on human-computer interaction (pp. 352–359). St. Petersburg, Russia.Google Scholar
  51. Neureiter, K., Meschtscherjakov, A., Wilfinger, D., & Tscheligi, M. (2011). Investigating the usage of multifunctional rotary knobs in the center stack with a contextual inquiry. In Proceedings of EA AUI 2011. New York: ACM.Google Scholar
  52. Newman, W. (2009). The status of ethnography in systems design. In Panel CHI’09 (Boston, MA). New York: ACMGoogle Scholar
  53. Osswald, S., Buchner, R., Weiss, A. & Tscheligi, M. (2012). Using participatory design to investigate technology usage in the cleanroom of a semiconductor factory “The message in the bottle: Best practices for transferring the knowledge from qualitative user studies”. Workshop at the ACM conference on designing interactive systems, Newcastle.Google Scholar
  54. Osswald, S., Sundstroem, P., & Tscheligi, M. (2013). The front seat passenger: How to transfer qualitative findings into design. International Journal of Vehicular Technology, 13, 14.Google Scholar
  55. Phithakkitnukoon, S., Veloso, M., Bento, C., Biderman, A., & Ratti, C. (2010). Taxi-aware map: Identifying and predicting vacant taxis in the city. In Proceedings of AmI’10 (pp. 86–95). Berlin/Heidelberg: Springer.Google Scholar
  56. Powdermaker, H. (1966). Stranger and friend: The way of an anthropologist. New York: W. W. Norton & Company Inc.Google Scholar
  57. Ramirez, L., Dyrks, T., Gerwinski, J., Betz, M., Scholz, M., & Wulf, V. (2012). Landmarke: An ad hoc deployable ubicomp infrastructure to support indoor navigation of firefighters personal and ubiquitous computing (Vol. 16, pp. 1025–1038). London: Springer.Google Scholar
  58. Randall, D. W., Harper, R. H. R., & Rouncefield, M. (2007). Fieldwork for design – Theory and practice. Computer supported cooperative work (pp. i–xi). New York: Springer, 1–330. ISBN 978-1-84628-767-1.CrossRefGoogle Scholar
  59. Rattenbury, T., Nafus, D., & Anderson, K. (2008). Plastic: A metaphor for integrated technologies. In Proceedings of the 10th international conference on Ubiquitous computing (pp. 232–241). New York: ACM.Google Scholar
  60. Robinson, M., Kovalainen, M., & Auramäki, E. (2000, January). Diary as dialogue in papermill process control. Communications of the ACM, 43(1), 65–70.Google Scholar
  61. Rode, J. A. (2011). Reflexivity in digital anthropology. In Proceedings of CHI 2011 (pp. 123–132). New York: ACM.Google Scholar
  62. Rogers, Y. (2011). Interaction design gone wild: Striving for wild theory. Interactions, 18(4), 58–62.CrossRefGoogle Scholar
  63. Roto, V., Väätäjä, H., Jumisko-Pyykkö, S., & Väänänen-Vainio-Mattila, K. (2011, September). Best practices for capturing context in user experience studies in the wild. In Proceedings of the 15th international academic MindTrek conference: Envisioning future media environments (pp. 91–98). ACM.Google Scholar
  64. Simonsen, J., & Kensing, F. (1997). Using ethnography in contextural design. Communications of the ACM, 40(7), 82–88.CrossRefGoogle Scholar
  65. Strasser, E., Weiss, A., Osswald, S., Grill, T., & Tscheligi, M. (2012). Combining implicit and explicit methods for the evaluation of an ambient persuasive factory display. In AmI2012: Proceedings of the 6th European conference on ambient intelligence. Springer, Currently Submitted.Google Scholar
  66. Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine communication. Cambridge: Cambridge University Press.Google Scholar
  67. Viitanen, J. (2011). Contextual inquiry method for user-centred clinical it system design. Studies in Health Technology and Informatics, 169, 965–969.Google Scholar
  68. Wax, R. H. (1971). Doing fieldwork: Warning and advice. University of Chicago Press.Google Scholar
  69. Werner, O., Schoepfle, G. M., & Ahern, J. (1987). Systematic fieldwork (Vol. 1). Newbury Park: Sage.Google Scholar
  70. Wilfinger, D., Meschtscherjakov, A., Murer, M., Osswald, S., & Tscheligi, M. (2011). Are we there yet? A probing study to inform design for the rear seat of family cars. In Proceedings of the 13th IFIP TC 13 international conference on human-computer interaction – Volume Part II (pp. 657–674). Heidelberg/New York: Springer.Google Scholar
  71. Zachhuber, D., Grill, T., & Tscheligi, M. (2012). Contextual Wizard of Oz – A framework combining contextual rapid prototyping and the Wizard of Oz method. In Proceedings of AMI 2012. New York: ACM.Google Scholar

Copyright information

© Springer-Verlag London 2015

Authors and Affiliations

  • Astrid Weiss
    • 1
  • Alexander Meschtscherjakov
    • 1
  • Roland Buchner
    • 1
  • Ewald Strasser
    • 1
  • Patricia M. Kluckner
    • 1
  • Sebastian Osswald
    • 1
  • Nicole Mirnig
    • 1
  • David Wilfinger
    • 1
  • Nicole Perterer
    • 1
  • Petra Sundstroem
    • 1
  • Arno Laminger
    • 1
  • Manfred Tscheligi
    • 1
  1. 1.Centre for Human-Computer Interaction, Department of Computer SciencesUniversity of SalzburgSalzburgAustria

Personalised recommendations