Face Anti-spoofing: Visual Approach

  • André Anjos
  • Jukka Komulainen
  • Sébastien Marcel
  • Abdenour Hadid
  • Matti Pietikäinen
Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

User authentication is an important step to protect information and in this regard face biometrics is advantageous. Face biometrics is natural, easy to use and less human-invasive. Unfortunately, recent work revealed that face biometrics is quite vulnerable to spoofing attacks. This chapter presents the different modalities of attacks to visual spectrum face recognition systems. We introduce public datasets for the evaluation of vulnerability of recognition systems and performance of countermeasures. Finally, we build a comprehensive view of antispoofing techniques for visual spectrum face recognition and provides an outlook of issues that remain unaddressed.

References

  1. 1.
    Schuckers SAC (2002) Spoofing and anti-spoofing measures. Information Security Technical Report 7:56–62CrossRefGoogle Scholar
  2. 2.
    Sun, T., Li, Q., Qiu, Z.: Advances in Biometric Person Authentication, chap. A Secure Multimodal Biomeric Verification Scheme, pp. 233–240. Springer (2005).Google Scholar
  3. 3.
    Rodrigues, R.N., Ling, L.L., Govindaraju, V.: Robustness of multimodal biometric fusion methods against spoof attacks. Journal of Visual Language and Computing (2009).Google Scholar
  4. 4.
    Galbally J, McCool C, Fierrez J, Marcel S, Ortega-Garcia J (2010) On the vulnerability of face verification systems to hill-climbing attacks. Pattern Recognition 43(3):1027–1038CrossRefMATHGoogle Scholar
  5. 5.
    Jain, A.K., Flynn, P., Ross, A.A. (eds.): Handbook of Biometrics. Springer-Verlag (2008).Google Scholar
  6. 6.
    Duc, N.M., Minh, B.Q.: Your face is not your password. In: Black Hat Conference (2009).Google Scholar
  7. 7.
    Thalheim, L., Krissler, J., Ziegler, P.M.: Body check: Biometric access protection devices and their programs put to the test. Heise Online (2002).Google Scholar
  8. 8.
    Toth, B.: Biometric id card debates. Newsletter Biometrie (2005).Google Scholar
  9. 9.
    Pan, G., Wu, Z., Sun, L.: Liveness detection for face recognition. Recent Advances in Face Recognition pp. 109–124 (2008).Google Scholar
  10. 10.
    Ratha, N.K., Connell, J.H., Bolle, R.M.: An analysis of minutiae matching strength. In: Proceedings of the International Conference on Audio- and Video-Based Biometric Person Authentication (AVBPA), pp. 223–228. Springer-Verlag (2001).Google Scholar
  11. 11.
    Li, S.Z., Jain, A.K. (eds.): Handbook of Face Recognition. Springer-Verlag (2011).Google Scholar
  12. 12.
    McCool, C., Marcel, S., Hadid, A., Pietikainen, M., Matejka, P., Cernocky, J., Poh, N., Kittler, J., Larcher, A., Levy, C., Matrouf, D., Bonastre, J.F., Tresadern, P., Cootes, T.: Bi-modal person recognition on a mobile phone: using mobile phone data. In: IEEE ICME Workshop on Hot Topics in Mobile Multimedia (2012).Google Scholar
  13. 13.
    Tan, X., Li, Y., Liu, J., Jiang, L.: Face liveness detection from a single image with sparse low rank bilinear discriminative model. In: Proceedings of the 11th European conference on Computer vision: Part VI, ECCV’10, pp. 504–517 (2010).Google Scholar
  14. 14.
    Li, J., Wang, Y., Tan, T., Jain, A.K.: Live face detection based on the analysis of fourier spectra. In. In Biometric Technology for Human Identification, pp. 296–303 (2004).Google Scholar
  15. 15.
    Bai, J., Ng, T.T., Gao, X., Shi, Y.Q.: Is physics-based liveness detection truly possible with a single image? In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3425–3428 (2010).Google Scholar
  16. 16.
    Anjos, A., Marcel, S.: Counter-measures to photo attacks in face recognition: a public database and a baseline. In: Proceedings of IAPR IEEE International Joint Conference on Biometrics (IJCB), Washington DC, USA (2011).Google Scholar
  17. 17.
    Anjos, A., Chakka, M.M., Marcel, S.: Motion-based counter-measures to photo attacks in face recognition (2013).Google Scholar
  18. 18.
    Chakka, M.M., Anjos, A., Marcel, S., Tronci, R., Muntoni, D., Fadda, G., Pili, M., Sirena, N., Murgia, G., Ristori, M., Roli, F., Yan, J., Yi, D., Lei, Z., Zhang, Z., Z.Li, S., Schwartz, W.R., Rocha, A., Pedrini, H., Lorenzo-Navarro, J., Castrillón-Santana, M., Määttä, J., Hadid, A., Pietikäinen, M.: Competition on counter measures to 2-d facial spoofing attacks. In: Proceedings of IAPR IEEE International Joint Conference on Biometrics (IJCB), Washington DC, USA (2011).Google Scholar
  19. 19.
    Chingovska, I., Anjos, A., Marcel, S.: On the effectiveness of local binary patterns in face anti-spoofing. In: IEEE BIOSIG 2012 (2012).Google Scholar
  20. 20.
    Chingovska, I., Anjos, A., Marcel, S.: Anti-spoofing in action: joint operation with a verification system. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Biometrics (2013).Google Scholar
  21. 21.
    Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: A face antispoofing database with diverse attacks. In: ICB (2012).Google Scholar
  22. 22.
    Erdogmus, N., Marcel, S.: Spoofing in 2d face recognition with 3d masks and anti-spoofing with kinect. In: Biometrics: Theory, Applications and Systems Conference (BTAS’13) (2013).Google Scholar
  23. 23.
    Chetty, G., Wagner, M.: Liveness verification in audio-video speaker authentication. In: in Proc. 10th ASSTA conference, pp. 358–363. Macquarie University Press (2004).Google Scholar
  24. 24.
    Frischholz RW, Dieckmann U (2000) Bioid: A multimodal biometric identification system. Computer 33(2):64–68CrossRefGoogle Scholar
  25. 25.
    Kollreider K, Fronthaler H, Faraj MI, Bigun J (2007) Real-time face detection and motion analysis with application in liveness assessment. Trans. Info. For. Sec. 2(3):548–558CrossRefGoogle Scholar
  26. 26.
    Pavlidis, I., Symosek, P.: The imaging issue in an automatic face/disguise detection system. In: Proceedings of the IEEE Workshop on Computer Vision Beyond the Visible Spectrum: Methods and Applications (CVBVS 2000), pp. 15–24. Washington, DC, USA (2000).Google Scholar
  27. 27.
    Sun L, Huang W, Wu M (2011) Tir/vis correlation for liveness detection in face recognition. Proceedings of the 14th international conference on Computer analysis of images and patterns - Volume Part II., CAIP’11Springer-Verlag, Berlin, Heidelberg, pp 114–121Google Scholar
  28. 28.
    Zhang, Z., Yi, D., Lei, Z., Li, S.Z.: Face liveness detection by learning multispectral reflectance distributions. In: International Conference on Face and Gesture, pp. 436–441 (2011).Google Scholar
  29. 29.
    Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.T.: Eulerian video magnification for revealing subtle changes in the world. ACM Trans. Graph. (SIGGRAPH 2012) 31(4) (2012).Google Scholar
  30. 30.
    Bharadwaj, S., Dhamecha, T.I., Vatsa, M., Richa, S.: Computationally efficient face spoofing detection with motion magnification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Biometrics (2013).Google Scholar
  31. 31.
    Chaudhry, R., Ravich, A., Hager, G., Vidal, R.: Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR (2009).Google Scholar
  32. 32.
    Kollreider K, Fronthaler H, Bigun J (2009) Non-intrusive liveness detection by face images. Image and Vision Computing 27:233–244CrossRefGoogle Scholar
  33. 33.
    Kollreider, K., Fronthaler, H., Bigun, J.: Verifying liveness by multiple experts in face biometrics. Computer Vision and Pattern Recognition Workshop pp. 1–6 (2008).Google Scholar
  34. 34.
    Bao, W., Li, H., Li, N., Jiang, W.: A liveness detection method for face recognition based on optical flow field. In: 2009 International Conference on Image Analysis and Signal Processing, pp. 233–236. IEEE (2009).Google Scholar
  35. 35.
    Määttä, J., Hadid, A., Pietikäinen, M.: Face spoofing detection from single images using micro-texture analysis. In: Proceedings of IAPR IEEE International Joint Conference on Biometrics (IJCB), Washington DC, USA (2011).Google Scholar
  36. 36.
    Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24:971–987CrossRefGoogle Scholar
  37. 37.
    Kose, N., Dugelay, J.L.: Countermeasure for the protection of face recognition systems against mask attacks. In: FG 2013, IEEE International Conference on Automatic Face and Gesture Recognition, 22–26 April 2013, Shanghai, China. Shanghai, CHINA (2013).Google Scholar
  38. 38.
    Pereira, T.d.F., Komulainen, J., Anjos, A., De Martino, J.M., Hadid, A., Pietikäinen, M., Marcel, S.: Face liveness detection using dynamic texture. EURASIP Journal on Image and Video Processing (2013).Google Scholar
  39. 39.
    Zhao G, Pietikäinen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6):915–928CrossRefGoogle Scholar
  40. 40.
    Pinto, A.d.S., Pedrini, H., Schwartz, W.R., Rocha, A.: Video-based face spoofing detection through visual rhythm analysis. In: Conference on Graphics, Patterns and Images (Sibgrapi) (2012).Google Scholar
  41. 41.
    Wang, T., Yang, J., Lei, Z., Liao, S., Li, S.Z.: Face liveness detection using 3d structure recovered from a single camera. In: IAPR International Conference on Biometrics, ICB (2013).Google Scholar
  42. 42.
    Gao, X., Ng, T.T., Qiu, B., Chang, S.F.: Single-view recaptured image detection based on physics-based features. In: IEEE International Conference on Multimedia & Expo (ICME), pp. 1469–1474 (2010).Google Scholar
  43. 43.
    Farid, H., Lyu, S.: Higher-order wavelet statistics and their application to digital forensics. In: in IEEE Workshop on Statistical Analysis in Computer Vision (2003).Google Scholar
  44. 44.
    Pan G, Sun L, Wu Z, Wang Y (2011) Monocular camera-based face liveness detection by combining eyeblink and scene context. Telecommunication Systems 47(3–4):215–225CrossRefGoogle Scholar
  45. 45.
    Komulainen, J., Hadid, A., Pietikäinen, M.: Context based face anti-spoofing. In: Proc. the IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS 2013), Washington, DC, 2013 (2013).Google Scholar
  46. 46.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. International Conference on Computer Vision & Pattern Recognition 2:886–893Google Scholar
  47. 47.
    Schwartz, W.R., Rocha, A., Pedrini, H.: Face Spoofing Detection through Partial Least Squares and Low-Level Descriptors. In: Proceedings of IAPR IEEE International Joint Conference on Biometrics (IJCB), Washington DC, USA (2011).Google Scholar
  48. 48.
    Tronci, R., Muntoni, D., Fadda, G., Pili, M., Sirena, N., Murgia, G., Ristori, M., Roli, F.: Fusion of multiple clues for photo-attack detection in face recognition systems. In: Proceedings of IAPR IEEE International Joint Conference on Biometrics (IJCB), Washington DC, USA (2011).Google Scholar
  49. 49.
    Yan, J., Zhang, Z., Lei, Z., Yi, D., Li, S.Z.: Face liveness detection by exploring multiple scenic clues. In: 12th International Conference on Control, Automation, Robotics and Vision, (ICARCV2012) (2012).Google Scholar
  50. 50.
    Komulainen, J., Anjos, A., Hadid, A., Marcel, S., Pietikäinen, M.: Complementary countermeasures for detecting scenic face spoofing attacks. In: IAPR International Conference on Biometrics, ICB (2013).Google Scholar
  51. 51.
    Ng, E.S., Chia, A.Y.S.: Face verification using temporal affective cues. In: International Conference on Pattern Recognition, ICPR, pp. 1249–1252 (2012).Google Scholar
  52. 52.
    Frischholz, R.W., Werner, A.: Avoiding replay-attacks in a face recognition systenm using head-pose estimation. In: Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces and Gestures, AMFG ’03. IEEE Computer Society, Washington, DC, USA (2003).Google Scholar
  53. 53.
    De Marsico, M., Nappi, M., Riccio, D., Dugelay, J.L.: Moving face spoofing detection via 3D projective invariants. In: ICB 2012, 5th IAPR International Conference on Biometrics, 29 March-1 April 2012, New Delhi, India. New Delhi, INDIA (2012).Google Scholar
  54. 54.
    Liu C, Yuen J, Torralba A (2011) Sift flow: Dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5):978–994CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • André Anjos
    • 1
  • Jukka Komulainen
    • 2
  • Sébastien Marcel
    • 1
  • Abdenour Hadid
    • 2
  • Matti Pietikäinen
    • 2
  1. 1.Idiap Research InstituteMartignySwitzerland
  2. 2.Center for Machine Vision Research (CMV), Department of Computer Science and Engineering (CSE)University of OuluOuluFinland

Personalised recommendations