Nanoparticles in Polymer Nanocomposite Food Contact Materials: Uses, Potential Release, and Emerging Toxicological Concerns

  • Karthik V. Pillai
  • Piper R. Hunt
  • Timothy V. Duncan
Part of the Molecular and Integrative Toxicology book series (MOLECUL)


Several types of nanotechnology-enabled plastics intended for the storage and transport of foods are close to commercialization. For food contact applications, nanocomposite plastics offer many advantages over traditional polymers. However, while the unique properties of engineered nanomaterials (ENMs) may be harnessed for many positive ends, there are concerns about whether ENMs pose risks to human health. The primary areas of interest for assessing safety of nanocomposite food contact materials (FCM) are the potential for migration of ENMs into food and the potential toxicity of such released ENMs. This chapter offers a review of theoretical and experimental methods to assess the likelihood of ENM release from nanotechnology-enabled materials into liquid media, as well as a brief overview of the potential toxicological considerations of ENMs likely to be used in FCMs. Because the use of nanotechnology in food contact applications is a developing field, this chapter also provides background information on some of the food-related applications of nanocomposites currently in development, and a discussion of current methods being used to assess the release of non-nanoscale food packaging additives or contaminants. The goal of this work is to provide readers with an appreciation for current activity in this field as well as an understanding of data gaps that may need to be addressed in order to ensure the safety of this emerging technology.


Engineered nanomaterials Food packaging Polymer nanocomposites Migration Nanotoxicity Nanoparticle toxicity Safety of nanotechnology 


  1. Alger H, Momcilovic D, Carlander D et al (2014) Methods to evaluate uptake of engineered nanomaterials by the alimentary tract. Compr Rev Food Sci Food Saf. doi: 10.1111/1541-4337.12077
  2. Albanese A, Tang PS, Chan WCW (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16CrossRefPubMedGoogle Scholar
  3. Alissawi N, Zaporojtchenko V, Strunskus T et al (2012) Tuning of the ion release properties of silver nanoparticles buried under a hydrophobic polymer barrier. J Nanopart Res 14(7):1–12Google Scholar
  4. Asare N, Instanes C, Sandberg WJ et al (2012) Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291(1–3):65–72CrossRefPubMedGoogle Scholar
  5. Avella M, De Vlieger JJ, Errico ME et al (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474CrossRefGoogle Scholar
  6. Avella M, Bruno G, Errico ME et al (2007) Innovative packaging for minimally processed fruits. Packag Technol Sci 20(5):325–335CrossRefGoogle Scholar
  7. Balasubramanyam A, Sailaja N, Mahboob M et al (2009) Evaluation of genotoxic effects of oral exposure to aluminum oxide nanomaterials in rat bone marrow. Mutat Res 676(1–2):41–47CrossRefPubMedGoogle Scholar
  8. Begley TH, Gay ML, Hollifield HC (1995) Determination of migrants in and migration from nylon food-packaging. Food Addit Contam 12(5):671–676CrossRefPubMedGoogle Scholar
  9. Begley T, Castle L, Feigenbaum A et al (2005) Evaluation of migration models that might be used in support of regulations for food-contact plastics. Food Addit Contam 22(1):73–90CrossRefPubMedGoogle Scholar
  10. Bouwmeester H, Dekkers S, Noordam MY et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62CrossRefPubMedGoogle Scholar
  11. Brandsch J, Mercea P, Ruter M et al (2002) Migration modelling as a tool for quality assurance of food packaging. Food Addit Contam 19:29–41CrossRefPubMedGoogle Scholar
  12. Busolo MA, Fernandez P, Ocio MJ et al (2010) Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit Contam 27A(11):1617–1626CrossRefGoogle Scholar
  13. Card JW, Magnuson BA (2010) A method to assess the quality of studies that examine the toxicity of engineered nanomaterials. Int J Toxicol 29(4):402–410CrossRefPubMedGoogle Scholar
  14. Card JW, Jonaitis TS, Tafazoli S et al (2011) An appraisal of the published literature on the safety and toxicity of food-related nanomaterials. Crit Rev Toxicol 41(1):20–49CrossRefGoogle Scholar
  15. Cerrada ML, Serrano C, Sánchez-Chaves M et al (2008) Self-sterilized EVOH-TiO2 nanocomposites: interface effects on biocidal properties. Adv Funct Mater 18(13):1949–1960CrossRefGoogle Scholar
  16. Chawengkijwanich C, Hayata Y (2008) Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. Int J Food Microbiol 123(3):288–292CrossRefPubMedGoogle Scholar
  17. Cho W-S, Kang B-C, Lee JK et al (2013) Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9PubMedCentralCrossRefPubMedGoogle Scholar
  18. Choudalakis G, Gotsis AD (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45(4):967–984CrossRefGoogle Scholar
  19. Code of Federal Regulations (CRC) (2013) 21CFC170.3, Title 21, Vol. 3, Part 170, Food Additives; Section 170.3(i) Definitions; definition of safety. Accessed 20 Oct 2013
  20. Cushen M, Kerry J, Morris M et al (2013) Migration and exposure assessment of silver from a PVC nanocomposite. Food Chem 139(1–4):389–397CrossRefPubMedGoogle Scholar
  21. de Azeredo HMC (2013) Antimicrobial nanostructures in food packaging. Trends Food Sci Technol 30(1):56–69CrossRefGoogle Scholar
  22. de Moura MR, Lorevice MV, Mattoso LHC et al (2011) Highly stable, edible cellulose films incorporating chitosan nanoparticles. J Food Sci 76(2):S25–S29CrossRefGoogle Scholar
  23. Dhar S, Mali V, Bodhankar S et al (2011) Biocompatible gellan gum-reduced gold nanoparticles: cellular uptake and subacute oral toxicity studies. J Appl Toxicol 31(5):411–420CrossRefPubMedGoogle Scholar
  24. Diaz CA, Xia Y, Rubino M et al (2013) Fluorescent labeling and tracking of nanoclay. Nanoscale 5(1):164–168CrossRefPubMedGoogle Scholar
  25. Duan Y, Liu J, Ma L et al (2010) Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 31(5):894–899CrossRefPubMedGoogle Scholar
  26. Duncan TV (2011a) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363(1):1–24CrossRefPubMedGoogle Scholar
  27. Duncan TV (2011b) The communication challenges presented by nanofoods. Nat Nanotechnol 6(11):683–688CrossRefPubMedGoogle Scholar
  28. Emamifar A, Kadivar M, Shahedi M et al (2011) Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control 22(3–4):408–413CrossRefGoogle Scholar
  29. Eom HJ, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44(21):8337–8342CrossRefPubMedGoogle Scholar
  30. European Food Safety Authority (EFSA) Scientific Committee (2009) The potential risks arising from nanoscience and nanotechnologies on food and feed safety. EFSA J 958:1–39. doi: 10.2903/j.efsa.2009.958, Accessed 24 Oct 2013
  31. European Food Safety Authority (EFSA) Scientific Committee (2011) Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9(5):2140. doi: 10.2903/j.efsa.2011.2140, Accessed 24 Oct 2013
  32. Fang XY, Domenek S, Ducruet V et al (2013) Diffusion of aromatic solutes in aliphatic polymers above glass transition temperature. Macromolecules 46(3):874–888CrossRefGoogle Scholar
  33. Farhoodi M, Mousavi SM, Sotudeh-Gharebagh R et al (2013) Migration of aluminum and silicon from PET/clay nanocomposite bottles into acidic food simulant. Packag Technol Sci. doi: 10.1002/pts.2017 Google Scholar
  34. Fayaz AM, Balaji K, Girilal M et al (2009) Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J Agric Food Chem 57(14):6246–6252CrossRefGoogle Scholar
  35. Fernández A, Picouet P, Lloret E (2010) Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. J Food Prot 73(12):2263–2269PubMedGoogle Scholar
  36. Food and Drug Administration (FDA) (2007) Guidance for industry: preparation of premarket submissions for food contact substances: chemistry recommendations. Accessed 20 Oct 2013
  37. Food and Drug Administration (FDA) (2011) Considering whether an FDA-regulated product involves the application of nanotechnology. Accessed 20 Oct 2013
  38. Fortunati E, Latterini L, Rinaldi S et al (2011) PLGA/Ag nanocomposites: in vitro degradation study and silver ion release. J Mater Sci Mater Med 22(12):2735–2744CrossRefPubMedGoogle Scholar
  39. Fröhlich E, Roblegg E (2012) Models for oral uptake of nanoparticles in consumer products. Toxicology 291(1–3):10–17PubMedCentralCrossRefPubMedGoogle Scholar
  40. Gaiser BK, Fernandes TF, Jepson MA et al (2012) Interspecies comparisons on the uptake and toxicity of silver and cerium dioxide nanoparticles. Environ Toxicol Chem 31(1):144–154CrossRefPubMedGoogle Scholar
  41. Hackenberg S, Scherzed A, Technau A et al (2011) Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol In Vitro 25(3):657–663CrossRefPubMedGoogle Scholar
  42. Hadrup N, Loeschner K, Bergström A et al (2012) Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch Toxicol 86(4):543–551CrossRefPubMedGoogle Scholar
  43. Hahn A, Brandes G, Wagener P et al (2011) Metal ion release kinetics from nanoparticle silicone composites. J Control Release 154(2):164–170CrossRefPubMedGoogle Scholar
  44. Huang YM, Chen S, Bing X et al (2011) Nanosilver migrated into food-simulating solutions from commercially available food fresh containers. Packag Technol Sci 24(5):291–297CrossRefGoogle Scholar
  45. Jia X, Li N, Chen J (2005) A subchronic toxicity study of elemental Nano-Se in Sprague-Dawley rats. Life Sci 76(17):1989–2003CrossRefPubMedGoogle Scholar
  46. Kim YS, Kim JS, Cho HS et al (2008) Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicol 20(6):575–583CrossRefGoogle Scholar
  47. Kim S, Choi JE, Choi J et al (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23(6):1076–1084CrossRefPubMedGoogle Scholar
  48. Kim YS, Song MY, Park JD et al (2010) Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol 7:20PubMedCentralCrossRefPubMedGoogle Scholar
  49. Kim JS, Song SS, Sung JH et al (2013) Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology 7(5):953–960Google Scholar
  50. Kittler S, Greulich C, Diendorf J et al (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22(16):4548–4554CrossRefGoogle Scholar
  51. Li H, Li F, Wang L et al (2009) Effect of nano-packing on preservation quality of Chinese jujube (Ziziphus jujuba Mill. var. inermis (Bunge) Rehd). Food Chem 114(2):547–552CrossRefGoogle Scholar
  52. Lin J-J, Lin W-C, Dong R-X et al (2012) The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers. Nanotechnology 23(6):065102CrossRefPubMedGoogle Scholar
  53. Liu W, Wu Y, Wang C et al (2010) Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 4(3):319–330CrossRefPubMedGoogle Scholar
  54. Loeschner K, Hadrup N, Qvortrup K et al (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18PubMedCentralCrossRefPubMedGoogle Scholar
  55. Longano D, Ditaranto N, Cioffi N et al (2012) Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem 403(4):1179–1186CrossRefPubMedGoogle Scholar
  56. Luque-Garcia JL, Sanchez-Díaz R, Lopez-Heras I et al (2013) Bioanalytical strategies for in vitro and in vivo evaluation of the toxicity induced by metallic nanoparticles. TrAC Trends Anal Chem 43:254–268CrossRefGoogle Scholar
  57. Maneewattanapinyo P, Banlunara W, Thammacharoen C et al (2011) An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci 73(11):1417–1423CrossRefPubMedGoogle Scholar
  58. Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72(3):R39–R55CrossRefPubMedGoogle Scholar
  59. Mauricio-Iglesias M, Peyron S, Guillard V et al (2010) Wheat gluten nanocomposite films as food-contact materials: migration tests and impact of a novel food stabilization technology (high pressure). J Appl Polym Sci 116(5):2526–2535Google Scholar
  60. Mauricio-Iglesias M, Gontard N, Gastaldi E (2011) Impact of high pressure treatment on the structure of montmorillonite. Appl Clay Sci 51(1–2):174–176CrossRefGoogle Scholar
  61. Mollahosseini A, Rahimpour A, Jahamshahi M et al (2012) The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane. Desalination 306:41–50CrossRefGoogle Scholar
  62. Noonan GO, Whelton AJ, Carlander D et al (2014) Measurement methods to evaluate engineered nanomaterial release from food contact materials. Comp Rev Food Sci Food Saf. doi: 10.1111/1541-4337.12079
  63. Paladini F, Pollini M, Talá A et al (2012) Efficacy of silver treated catheters for haemodialysis in preventing bacterial adhesion. J Mater Sci Mater Med 23(8):1983–1990CrossRefPubMedGoogle Scholar
  64. Park EJ, Bae E, Yi J et al (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 30(2):162–168CrossRefPubMedGoogle Scholar
  65. Park E-J, Kim H, Kim Y et al (2011a) Repeated-dose toxicity attributed to aluminum nanoparticles following 28-day oral administration, particularly on gene expression in mouse brain. Toxicol Environ Chem 93(1):120–133CrossRefGoogle Scholar
  66. Park K, Park E-J, Chun IK et al (2011b) Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharmacol Res 34(1):153–158CrossRefGoogle Scholar
  67. Piao MJ, Kang KA, Lee IK et al (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100CrossRefPubMedGoogle Scholar
  68. Podsiadlo P, Kaushik AK, Arruda EM et al (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318(5847):80–83CrossRefPubMedGoogle Scholar
  69. Ray SS, Yamada K, Okamoto M et al (2002) Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2(10):1093–1096CrossRefGoogle Scholar
  70. Risch SJ (2009) Food packaging history and innovations. J Agric Food Chem 57(18):8089–8092CrossRefPubMedGoogle Scholar
  71. Robertson GL (2006) Food packaging: principles and practice, 2nd edn. Taylor and Francis Group, LLC, Boca RatonGoogle Scholar
  72. Rulis AM, Levitt JA (2009) FDA’s food ingredient approval process, safety assurance based on scientific assessment. Regul Toxicol Pharmacol 53(1):20–31CrossRefPubMedGoogle Scholar
  73. Sánchez-Valdes S, Ortega-Ortiz H, Ramos-de Valle LF et al (2009) Mechanical and antimicrobial properties of multilayer films with a polyethylene/silver nanocomposite layer. J Appl Polym Sci 111(2):953–962Google Scholar
  74. Schmidt B, Petersen JH, Koch CB et al (2009) Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites. Food Addit Contam 26A(12):1619–1627CrossRefGoogle Scholar
  75. Schmidt B, Katiyar V, Plackett D et al (2011) Migration of nanosized layered double hydroxide platelets from polylactide nanocomposite films. Food Addit Contam 28A(7):956–966CrossRefGoogle Scholar
  76. Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767–2781Google Scholar
  77. Seok SH, Cho W-S, Park JS et al (2013) Rat pancreatitis produced by 13-week administration of zinc oxide nanoparticles: biopersistence of nanoparticles and possible solutions. J Appl Toxicol 33(10):1089–1096CrossRefPubMedGoogle Scholar
  78. Šimon P, Chaudhry Q, Bakoš D (2008) Migration of engineered nanoparticles from polymer packaging to food—a physicochemical view. J Food Nutr Res 47(3):105–113Google Scholar
  79. Song H, Li B, Lin Q-B et al (2011) Migration of silver from nanosilver-polyethylene composite packaging into food simulants. Food Addit Contam 28(12):1758–1762Google Scholar
  80. Strohal R, Schelling M, Takacs M et al (2005) Nanocrystalline silver dressings as an efficient anti-MRSA barrier: a new solution to an increasing problem. J Hosp Infect 60(3):226–230CrossRefPubMedGoogle Scholar
  81. Sweet MJ, Singleton I (2011) Silver nanoparticles: a microbial perspective. Adv Appl Microbiol 77:115–133CrossRefPubMedGoogle Scholar
  82. United States Code (2010) 21 United States Code, 2010 Edition, Title 21—Food and Drugs, Chapter 9 – Federal Food, Drug, and Cosmetic Act, Subchapter II – Definitions; Section 321, Definition for food additive. Accessed 20 Oct 2013
  83. United States Environmental Protection Agency (USEPA) (2013) Municipal solid waste. U.S. Environmental Protection Agency. Accessed 30 June 2014
  84. van der Zande M, Vandebriel RJ, Van Doren E et al (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6(8):7427–7442CrossRefPubMedGoogle Scholar
  85. Wang Y, Chen Z, Ba T et al (2013) Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 9(9–10):1742–1752CrossRefPubMedGoogle Scholar
  86. Welle F (2013) A new method for the prediction of diffusion coefficients in poly(ethylene terephthalate). J Appl Polym Sci 129:1845–1851CrossRefGoogle Scholar
  87. Xia X, Tang Y, Xie C et al (2011) An approach to give prospective life-span of the copper/low-density-polyethylene nanocomposite intrauterine device. J Mater Sci Mater Med 22(7):1773–1781CrossRefPubMedGoogle Scholar
  88. Xiu Z-M, Zhang Q-B, Puppala HL et al (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Karthik V. Pillai
    • 1
  • Piper R. Hunt
    • 2
  • Timothy V. Duncan
    • 1
  1. 1.Division of Food Processing Science and Technology, Office of Food SafetyCenter for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationBedford ParkUSA
  2. 2.Division of Toxicology, Office of Applied Research and Safety AssessmentCenter for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationLaurelUSA

Personalised recommendations