The Haunted Swamps of Heuristics: Uncertainty in Problem Solving

  • Artem Amirkhanov
  • Stefan Bruckner
  • Christoph Heinzl
  • M. Eduard Gröller
Part of the Mathematics and Visualization book series (MATHVISUAL)


In scientific visualization the key task of research is the provision of insight into a problem. Finding the solution to a problem may be seen as finding a path through some rugged terrain which contains mountains, chasms, swamps, and few flatlands. This path—an algorithm discovered by the researcher—helps users to easily move around this unknown area. If this way is a wide road paved with stones it will be used for a long time by many travelers. However, a narrow footpath leading through deep forests and deadly swamps will attract only a few adventure seekers. There are many different paths with different levels of comfort, length, and stability, which are uncertain during the research process. Finding a systematic way to deal with this uncertainty can greatly assist the search for a safe path which is in our case the development of a suitable visualization algorithm for a specific problem. In this work we will analyze the sources of uncertainty in heuristically solving visualization problems and will propose directions to handle these uncertainties.


Parameter Space Maximum Intensity Projection World Line Dual Energy Compute Tomography Direct Volume Rendering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge the Bridge-Project SmartCT and the K-Project ZPT ( of the Austrian Research Promotion Agency (FFG). We also acknowledge the ViMaL project supported by the Austrian Science Fund (FWF), grant no. P21695.


  1. 1.
    Amirkhanov, A., Heinzl, C., Reiter, M., Gröller, M.E.: Visual optimality and stability analysis of 3DCT scan positions. IEEE Trans. Visual. Comput. Graph. 16(6), 1477–1486 (2010)Google Scholar
  2. 2.
    Balabanian, J.P., Gröller, M.E.: A. In: Hagen, H. (ed.) Scientific Visualization: Interactions, Features, Metaphors. Dagstuhl Follow-Ups, vol. 2, pp. 36–47. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2011)Google Scholar
  3. 3.
    Balabanian, J.P., Viola, I., Gröller, M.E.: Interactive illustrative visualization of hierarchical volume data. In: Proceedings of Graphics Interface (best student paper award) (2010)Google Scholar
  4. 4.
    Berger, W., Piringer, H., Filzmoser, P., Gröller, E.: Uncertainty-aware exploration of continuous parameter spaces using multivariate prediction. Comput. Graph. Forum 30(3), 911–920 (2011)CrossRefGoogle Scholar
  5. 5.
    Bishop, G., Fuchs, H., Mcmillan, L., Zagier, E.J.S.: Frameless rendering: double buffering considered harmful. In: ACM Siggraph ’94 Conference, vol. 28, pp. 175–176 (1994)Google Scholar
  6. 6.
    Bruckner, S., Gröller, M.E.: Instant volume visualization using maximum intensity difference accumulation. Comput. Graph. Forum 28(3), 775–782 (2009)CrossRefGoogle Scholar
  7. 7.
    Bruckner, S., Möller, T.: Result-driven exploration of simulation parameter spaces for visual effects design. IEEE Trans. Visual. Comput. Graph. 16(6), 1467–1475 (2010)Google Scholar
  8. 8.
    Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2 edn. Wiley, New York (2003)Google Scholar
  9. 9.
    Gavrilescu, M., Malik, M.M., Gröller, M.E.: Custom interface elements for improved parameter control in volume rendering. In: 14th International Conference on System Theory and Control, pp. 219–224 (2010)Google Scholar
  10. 10.
    Hauser, H., Mroz, L., Bischi, G.I., Gröller, M.E.: Two-level volume rendering. IEEE Trans. Visual. Comput. Graph. 7(3), 242–252 (2001)CrossRefGoogle Scholar
  11. 11.
    Heinzl, C.: Analysis and visualization of industrial CT data. Ph.D. thesis, Institute of Computer Graphics and Algorithms, Vienna University of Technology (2009). URL:
  12. 12.
    Ma, K.L.: Image graphs—A novel approach to visual data exploration. Proc. IEEE Visual. 1999, 81–513 (1999)Google Scholar
  13. 13.
    Malik, M.M., Heinzl, C., Gröller, M.E.: Comparative visualization for parameter studies of dataset series. IEEE Trans. Visual. Comput. Graph. 16(5), 829–840 (2010)CrossRefGoogle Scholar
  14. 14.
    Rautek, P., Bruckner, S., Gröller, M.E.: Semantic layers for illustrative volume rendering. IEEE Trans. Visual. Comput. Graph. 13(6), 1336–1343 (2007)CrossRefGoogle Scholar
  15. 15.
    Roos, J., Fleischmann, D., Koechl, A., Rakshe, T., Straka, M., Napoli, A., Kanitsar, A., Sramek, M., Gröller, M.E.: Multipath curved planar reformation of the peripheral arterial tree in CT angiography. J. Radiol. 244(1), 281–290 (2007)Google Scholar
  16. 16.
    Torsney-Weir, T., Saad, A., Möller, T., Weber, B., Hege, H.C., Verbavatz, J.M., Bergner, S.: Tuner: principled parameter finding for image segmentation algorithms using visual response surface exploration. IEEE Trans. Visual. Comput. Graph. 17(12), 1892–1901 (2011)CrossRefGoogle Scholar
  17. 17.
    Waser, J., Fuchs, R., Ribičić, H., Schindler, B., Blöschl, G., Gröller, M.E.: World lines. IEEE Trans. Visual. Comput. Graph. 16(6), 1458–1467 (2010)CrossRefGoogle Scholar
  18. 18.
    Waser, J., Ribičić, H., Fuchs, R., Hirsch, C., Schindler, B., Blöschl, G., Gröller, M.E.: Nodes on ropes: a comprehensive data and control flow for steering ensemble simulations. IEEE Trans. Visual. Comput. Graph. 17(12), 1872–1881 (2011)Google Scholar
  19. 19.
    van Wijk, J.J., van Liere, R.: HyperSlice: visualization of scalar functions of many variables. In: Proceedings of the 4th Conference on Visualization ’93, VIS ’93, pp. 119–125. IEEE Computer Society (1993)Google Scholar
  20. 20.
    Zöllner, F.: Ueber eine neue Art von Pseudoskopie und ihre Beziehungen zu den von Plateau und Oppel beschriebenen Bewegungsphänomenen. Annalen der Physik 186(7), 500–523 (1860)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Artem Amirkhanov
    • 1
  • Stefan Bruckner
    • 1
  • Christoph Heinzl
    • 2
  • M. Eduard Gröller
    • 1
  1. 1.Vienna University of TechnologyViennaAustria
  2. 2.Wels CampusUpper Austrian University of Applied SciencesWelsAustria

Personalised recommendations