Visualization in Connectomics

  • Hanspeter Pfister
  • Verena Kaynig
  • Charl P. Botha
  • Stefan Bruckner
  • Vincent J. Dercksen
  • Hans-Christian Hege
  • Jos B. T. M. Roerdink
Chapter
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Connectomics is a branch of neuroscience that attempts to create a connectome, i.e., a complete map of the neuronal system and all connections between neuronal structures. This representation can be used to understand how functional brain states emerge from their underlying anatomical structures and how dysfunction and neuronal diseases arise. We review the current state-of-the-art of visualization and image processing techniques in the field of connectomics and describe a number of challenges. After a brief summary of the biological background and an overview of relevant imaging modalities, we review current techniques to extract connectivity information from image data at macro-, meso- and microscales. We also discuss data integration and neural network modeling, as well as the visualization, analysis and comparison of brain networks.

References

  1. 1.
    Appel, N.M.: Classical and contemporary histochemical approaches for evaluating central nervous system microanatomy. Ann. NY Acad. Sci. 820(1), 14–28 (1997)CrossRefGoogle Scholar
  2. 2.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)CrossRefGoogle Scholar
  3. 3.
    Bassett, D.S., Bullmore, E.: Small-world brain networks. Neuroscientist 12(6), 512–523 (2006)CrossRefGoogle Scholar
  4. 4.
    Behrens, T.E., Woolrich, M.W., Jenkinson, M., JohansenBerg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50(5), 1077–1088 (2003)CrossRefGoogle Scholar
  5. 5.
    Bertrand, L., Nissanov, J.: The neuroterrain 3D mouse brain atlas. Front. Neuroinform. 2, 3 (2008)CrossRefGoogle Scholar
  6. 6.
    Bezgin, G., Reid, A., Schubert, D., Kötter, R.: Matching spatial with ontological brain regions using java tools for visualization, database access, and integrated data analysis. Neuroinformatics 7(1), 7–22 (2009)CrossRefGoogle Scholar
  7. 7.
    Bjaalie, J.G.: Localization in the brain: new solutions emerging. Nat. Rev. Neurosci. 3, 322–325 (2002)CrossRefGoogle Scholar
  8. 8.
    Blaas, J., Botha, C.P., Peters, B., Vos, F.M., Post, F.H.: Fast and reproducible fiber bundle selection in DTI visualization. In: Silva, C., Gröller, E., Rushmeier, H. (eds.) Proceedings of IEEE Visualization 2005, pp. 59–64 (2005)Google Scholar
  9. 9.
    Bruckner, S., Gröller, M.: Instant volume visualization using maximum intensity difference accumulation. Comput. Graph. Forum 28(3), 775–782 (2009)CrossRefGoogle Scholar
  10. 10.
    Bullmore, E., Harrison, L., Lee, L., Mechelli, A., Friston, K.(eds.): Special issue on functional connectivity. Neuroinformatics 2(2) (2004)Google Scholar
  11. 11.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009). see also Corrigendum (March 3, 2009)Google Scholar
  12. 12.
    Bullmore, E., Bassett, D.: Brain graphs: graphical models of the human brain connectome. Ann. Rev. Clin. Psychol. 7, 113–140 (2011)CrossRefGoogle Scholar
  13. 13.
    Burns, G.a.P.C., Cheng, W.C., Thompson, R.H., Swanson, L.W.: The NeuARt II system: A viewing tool for neuroanatomical data based on published neuroanatomical atlases. BMC Bioinform. 7, 531–549 (2006)Google Scholar
  14. 14.
    Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., Tomancak, P., Hartenstein, V.: An integrated micro- and macroarchitectural analysis of the drosophila brain by computer-assisted serial section electron microscopy. PLoS Biol 8(10), e1000,502 (2010)Google Scholar
  15. 15.
    Chicurel, M.: Databasing the brain. Nature 406(6798), 822–825 (2000)CrossRefGoogle Scholar
  16. 16.
    Chklovskii, D.B., Vitaladevuni, S., Scheffer, L.K.: Semi-automated reconstruction of neural circuits using electron microscopy. Curr. Opin. Neurobiol. 20(5), 667–675 (2010)CrossRefGoogle Scholar
  17. 17.
    Conchello, J.A., Lichtman, J.: Optical sectioning microscopy. Nat. Methods 2(12), 920–931 (2005)CrossRefGoogle Scholar
  18. 18.
    Crippa, A., Roerdink, J.B.T.M.: Data-driven visualization of functional brain regions from resting state fMRI data. In: Eisert, P., Polthier, K., Hornegger, J. (eds.) Proceedings Vision, Modeling and Visualization Workshop (VMV), 4–6 Oct, Berlin, pp. 247–254 (2011)Google Scholar
  19. 19.
    Crippa, A., Maurits, N.M., Roerdink, J.B.T.M.: Graph averaging as a means to compare multichannel EEG coherence networks and its application to the study of mental fatigue and neurodegenerative disease. Comput. Graph. 35(2), 265–274 (2011)CrossRefGoogle Scholar
  20. 20.
    Da Costa, N.M., Fürsinger, D., Martin, K.A.C.: The synaptic organization of the claustral projection to the cat’s visual cortex. J. Neurosci. 30(39), 13,166–13,170 (2010)Google Scholar
  21. 21.
    Denk, W., Horstmann, H.: Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2(11), e329 (2004)CrossRefGoogle Scholar
  22. 22.
    Dercksen, V.J., Oberlaender, M., Sakmann, B., Hege, H.C.: Interactive Visualization—a Key Prerequisite for Reconstruction of Anatomically Realistic Neural Networks. In: Linsen, L. (ed.) Visualization in Medicine and Life Sciences II. Springer, Berlin (2012)Google Scholar
  23. 23.
    Einstein, A.: Investigations on the Theory of the Brownian Movement. Dover (1956)Google Scholar
  24. 24.
    Emmenlauer, M., Ronneberger, O., Ponti, A., Schwarb, P., Griffa, A., Filippi, A., Nitschke, R., Driever, W., Burkhardt, H.: XuvTools: free, fast and reliable stitching of large 3D datasets. J. Microsc. 233(1), 42–60 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Enders, F., Sauber, N., Merhof, D., Hastreiter, P., Nimsky, C., Stamminger, M.: Visualization of white matter tracts with wrapped streamlines. In: IEEE Visualization, 2005. VIS 05, pp. 51–58. IEEE (2005)Google Scholar
  26. 26.
    Everts, M.H., Bekker, H., Roerdink, J.B.T.M., Isenberg, T.: Depth-dependent halos: illustrative rendering of dense line data. IEEE Trans. Vis. Comput. Graph. 15(6), 1299–1306 (2009)CrossRefGoogle Scholar
  27. 27.
    Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., Schlaggar, B.L., Petersen, S.E.: Functional brain networks develop from a “local to distributed” organization. PLoS Comput. Biol. 5(5), e1000,381 (2009)Google Scholar
  28. 28.
    Fair, D.A., Cohen, A.L., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., Barch, D.M., Raichle, M.E., Petersen, S.E., Schlaggar, B.L.: The maturing architecture of the brain’s default network. Proc. Natl. Acad. Sci. 105(10), 4028–4032 (2008)CrossRefGoogle Scholar
  29. 29.
    Fiala, J.C.: Reconstruct: a free editor for serial section microscopy. J. Microsc. 218(1), 52–61 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Fornito, A., Zalesky, A., Pantelis, C., Bullmore, E.T.: Schizophrenia, neuroimaging and connectomics. NeuroImage 62, 2296–2314 (2012)Google Scholar
  31. 31.
    Fredriksson, J.: Design of an Internet accessible visual human brain database system. In: Proceedings of IEEE International Conference on Multimedia Computing and Systems, vol. 1, pp. 469–474 (1999)Google Scholar
  32. 32.
    Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78 (1994)CrossRefGoogle Scholar
  33. 33.
    Gan, W.B., Grutzendler, J., Wong, W.T., Wong, R.O.L., Lichtman, J.W.: Multicolor “DiOlistic” Labeling Neurotechnique of the Nervous System Using. Neuron 27, 219–225 (2000)CrossRefGoogle Scholar
  34. 34.
    Hagmann, P., Jonasson, L., Maeder, P., Thiran, J., Wedeen, V.J., Meuli, R.: Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1), S205–S223 (2006)CrossRefGoogle Scholar
  35. 35.
    Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V.: Magneto-encephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65, 413–497 (1993)CrossRefGoogle Scholar
  36. 36.
    Hayworth, K.J., Kasthuri, N., Schalek, R., Lichtman, J.W.: Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microsc. Microanal. 12(S02), 86–87 (2006)CrossRefGoogle Scholar
  37. 37.
    Helmstaedter, M., Briggman, K.L., Denk, W.: High-accuracy neurite reconstruction for high-throughput neuroanatomy. Nat. Neurosci. 14, 1081–1088 (2011)CrossRefGoogle Scholar
  38. 38.
    Huberman, A.D., Niell, C.M.: What can mice tell us about how vision works? Trends Neurosci. 34(9), 464–473 (2011)CrossRefGoogle Scholar
  39. 39.
    Jain, V., Bollmann, B., Richardson, M., Berger, D.R., Helmstaedter, M.N., Briggman, K.L., Denk, W., Bowden, J.B., Mendenhall, J.M., Abraham, W.C., Harris, K.M., Kasthuri, N., Hayworth, K.J., Schalek, R., Tapia, J.C., Lichtman, J.W., Seung, H.S.: Boundary learning by optimization with topological constraints. IEEE Conference on Computer Vision and Pattern Recognition pp. 2488–2495 (2010)Google Scholar
  40. 40.
    Jenett, A., Schindelin, J.E., Heisenberg, M.: The virtual insect brain protocol: creating and comparing standardized neuroanatomy. BMC Bioinform. 7(1), 544–555 (2006)CrossRefGoogle Scholar
  41. 41.
    Jeong, W.K., Johnson, M.K.: Display-aware Image Editing. IEEE International Conference on Computational Photography (2011)Google Scholar
  42. 42.
    Jeong, W.K., Beyer, J., Hadwiger, M., Blue, R., Law, C., Vazquez-Reina, A., Reid, R.C., Lichtman, J., Pfister, H.: Ssecrett and neurotrace: interactive visualization and analysis tools for large-scale neuroscience data sets. IEEE Comput. Graph. Appl. 30(3), 58–70 (2010)CrossRefGoogle Scholar
  43. 43.
    Joshi, S.H., Horn, J.D.V., Toga, A.W.: Interactive exploration of neuroanatomical meta-spaces. Front. Neuroinform. 3, 38 (2009)CrossRefGoogle Scholar
  44. 44.
    Jurrus, E., Paiva, A.R.C., Watanabe, S., Anderson, J.R., Jones, B.W., Whitaker, R.T., Jorgensen, E.M., Marc, R.E., Tasdizen, T.: Detection of neuron membranes in electron microscopy images using a serial neural network architecture. Med. Image Anal. 14(6), 770–783 (2010)CrossRefGoogle Scholar
  45. 45.
    Kaiser, M.: A tutorial in connectome analysis: Topological and spatial features of brain networks. NeuroImage 57(3), 892–907 (2011) (Special Issue: Educational Neuroscience)Google Scholar
  46. 46.
    Kaynig, V., Fischer, B., Buhmann, J.M.: Probabilistic image registration and anomaly detection by nonlinear warping. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  47. 47.
    Kaynig, V., Fuchs, T., Buhmann, J.M.: Geometrical consistent 3D tracing of neuronal processes in ssTEM data. In: International Conference on Medical Image Computing and Computer Assisted Intervention (2010)Google Scholar
  48. 48.
    Kaynig, V., Fuchs, T., Buhmann, J.M.: Neuron geometry extraction by perceptual grouping in ssTEM images. In: T. Fuchs, J.M. Buhmann (eds.) IEEE Conference on Computer Vision and Pattern Recognition, pp. 2902–2909. IEEE (2010)Google Scholar
  49. 49.
    Kindlmann, G., Weinstein, D.: Hue-balls and lit-tensors for direct volume rendering of diffusion tensor fields. In: Proceedings of Visualization ’99, pp. 183–524. IEEE (1999)Google Scholar
  50. 50.
    Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of IEEE TVCG/EG Symposium on Visualization, pp. 147–154 (2004)Google Scholar
  51. 51.
    Klein, J., Friman, O., Hadwiger, M., Preim, B., Ritter, F., Vilanova, A., Zachmann, G., Bartz, D.: Visual computing for medical diagnosis and treatment. Comput. Graph. 33(4), 554–565 (2009)CrossRefGoogle Scholar
  52. 52.
    Knott, G., Marchman, H., Wall, D., Lich, B.: Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 28(12), 2959–2964 (2008)CrossRefGoogle Scholar
  53. 53.
    Koslow, S.H., Subramaniam, S.: Databasing the Brain: From Data to Knowledge. Wiley (2005)Google Scholar
  54. 54.
    Kötter, R.: Online retrieval, processing, and visualization of primate connectivity data from the cocomac database. Neuroinformatics 2(2), 127–44 (2004)CrossRefGoogle Scholar
  55. 55.
    Kuß, A., Prohaska, S., Meyer, B., Rybak, J., Hege, H.C.: Ontology-based visualization of hierarchical neuroanatomical structures. In: Proc. Eurographics Workshop on Visual Computing for Biomedicine, VCBM, Delft, The Netherlands, pp. 177–184 (2008)Google Scholar
  56. 56.
    Kuß, A., Gensel, M., Meyer, B., Dercksen, V., Prohaska, S.: Effective techniques to visualize filament-surface relationships. Comput. Graph. Forum 29(3), 1003–1012 (2010)CrossRefGoogle Scholar
  57. 57.
    Lang, S., Dercksen, V.J., Sakmann, B., Oberlaender, M.: Simulation of signal flow in three-dimensional reconstructions of an anatomically realistic neuronal network in rat vibrissal cortex. Neural Netw. 24(9), 998–1011 (2011)CrossRefGoogle Scholar
  58. 58.
    Lau, C., Ng, L., Thompson, C., Pathak, S., Kuan, L., Jones, A., Hawrylycz, M.: Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinform. 9, 153–163 (2008)CrossRefGoogle Scholar
  59. 59.
    de Leeuw, W., Verschure, P.J., van Liere, R.: Visualization and analysis of large data collections: a case study applied to confocal microscopy data. IEEE Trans. Vis. Comput. Graph. 12(5), 1251–1258 (2006)CrossRefGoogle Scholar
  60. 60.
    Lichtman, J., Livet, J., Sanes, J.: A technicolour approach to the connectome. Nat. Rev. Neurosci. 9(6), 417–422 (2008)CrossRefGoogle Scholar
  61. 61.
    Lin, C.Y., Tsai, K.L., Wang, S.C., Hsieh, C.H., Chang, H.M., Chiang, A.S.: The Neuron Navigator: Exploring the information pathway through the neural maze. In: Proceedings of IEEE Pacific Visualization 2011, pp. 35–42. IEEE (2011)Google Scholar
  62. 62.
    Luscombe, N.M., Babu, M.M., Yu, H., Snyder, M., Teichmann, S.A., Gerstein, M.: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004)CrossRefGoogle Scholar
  63. 63.
    Mackay, T.F., Anholt, R.R.: Of flies and man: drosophila as a model for human complex traits. Ann. Rev. Genomics Hum. Genet. 7, 339–367 (2006)CrossRefGoogle Scholar
  64. 64.
    Maye, A., Wenckebach, T.H., Hege, H.C.: Visualization, reconstruction, and integration of neuronal structures in digital brain atlases. Int. J. Neurosci. 116(4), 431–459 (2006)CrossRefGoogle Scholar
  65. 65.
    Oberlaender, M., de Kock, C.P.J., Bruno, R.M., Ramirez, A., Meyer, H.S., Dercksen, V.J., Helmstaedter, M., Sakmann, B.: Cell Type-Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex. Cerebral Cortex. 22(10), 2375–2395 (2012) doi:10.1093/cercor/bhr317
  66. 66.
    Oberlaender, M., Dercksen, V.J., Egger, R., Gensel, M., Sakmann, B., Hege, H.C.: Automated three-dimensional detection and counting of neuron somata. J. Neurosci. Methods 180(1), 147–160 (2009)CrossRefGoogle Scholar
  67. 67.
    Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87(24), 9868–9872 (1990)CrossRefGoogle Scholar
  68. 68.
    Ogawa, S., Tank, D.W., Menon, R., Ellermann, J.M., Kim, S.G., Merkle, H., Ugurbil, K.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. 89(13), 5951–5955 (1992)CrossRefGoogle Scholar
  69. 69.
    Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50(5), 955–965 (2003)CrossRefGoogle Scholar
  70. 70.
    Peeters, T.H., Prčkovska, V., van Almsick, M., Vilanova, A., ter Haar Romeny, B.M.: Fast and sleek glyph rendering for interactive HARDI data exploration. In: Visualization Symposium, 2009. PacificVis ’09. IEEE Pacific, pp. 153–160. IEEE (2009)Google Scholar
  71. 71.
    Pereanu, W., Hartenstein, V.: Neural lineages of the drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage. J. Neurosci. 26(20), 5534–5553 (2006)CrossRefGoogle Scholar
  72. 72.
    Perrin, M., Poupon, C., Cointepas, Y., Rieul, B., Golestani, N., Pallier, C., Rivire, D., Constantinesco, A., Bihan, D., Mangin, J.F.: Fiber tracking in q-Ball fields using regularized particle trajectories. In: Christensen, G.E., Sonka, M. (eds.) Inf. Process. Med. Imaging, vol. 3565, pp. 52–63. Springer, Berlin (2005)CrossRefGoogle Scholar
  73. 73.
    Prčkovska, V., Peeters, T.H., van Almsick, M., ter, : Haar Romeny, B., Vilanova i Bartroli, A.: Fused DTI/HARDI visualization. IEEE Trans. Vis. Comput. Graph. 17(10), 1407–1419 (2011)Google Scholar
  74. 74.
    Preibisch, S., Saalfeld, S., Tomancak, P.: Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25(11), 1463–1465 (2009)CrossRefGoogle Scholar
  75. 75.
    Press, W.A., Olshausen, B.A., Essen, D.C.V.: A graphical anatomical database of neural connectivity. Philos. Trans. R. Soc. 356(1412), 1147–1157 (2001)CrossRefGoogle Scholar
  76. 76.
    Reina, A.V., Miller, E., Pfister, H.: Multiphase geometric couplings for the segmentation of neural processes. IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2009)Google Scholar
  77. 77.
    Roberts, M., Jeong, W.K., V, A., Unger, M.: Neural Process Reconstruction from Sparse User Scribbles. In: Medical Image Computing and Computer Assisted Intervention, pp. 1–8 (2011)Google Scholar
  78. 78.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010)CrossRefGoogle Scholar
  79. 79.
    Rybak, J., Kuss, A., Lamecker, H., Zachow, S., Hege, H., Lienhard, M., Singer, J., Neubert, K., Menzel, R.: The digital bee brain: integrating and managing neurons in a common 3d reference system. Frontiers in systems neuroscience 4 (2010)Google Scholar
  80. 80.
    Salvador, R., Suckling, J., Coleman, M.R.: Pickard John, D., Menon, D., Bullmore, E.: Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15, 1332–1342 (2005)Google Scholar
  81. 81.
    Schomer, D.L., Lopes da Silva, F.: Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Wolters Kluwer/Lippincott Williams & Wilkins (2010)Google Scholar
  82. 82.
    Schultz, T., Theisel, H., Seidel, H.P.: Topological visualization of brain diffusion MRI data. IEEE Trans. Vis. Comput. Graph. 13(6), 1496–1503 (2007)CrossRefGoogle Scholar
  83. 83.
    Seung, S.: Connectome. Houghton Mifflin Harcourt (2011). In pressGoogle Scholar
  84. 84.
    Sharan, R., Ideker, T.: Modeling cellular machinery through biological network comparison. Nat. Biotechnol. 24(4), 427–433 (2006)CrossRefGoogle Scholar
  85. 85.
    Sherbondy, A., Akers, D., Mackenzie, R., Dougherty, R., Wandell, B.: Exploring connectivity of the brain’s white matter with dynamic queries. IEEE Trans. Vis. Comput. Graph. 11(4), 419–430 (2005)CrossRefGoogle Scholar
  86. 86.
    Shu, N., Liu, Y., Li, J., Li, Y., Yu, C., Jiang, T.: Altered anatomical network in early blindness revealed by diffusion tensor tractography. PLoS One 4(9), e7228 (2009)CrossRefGoogle Scholar
  87. 87.
    Sporns, O.: Networks of the brain. MIT Press, Cambridge (2010)Google Scholar
  88. 88.
    Sporns, O., Zwi, J.: The small world of the cerebral cortex. Neuroinformatics 2, 145–162 (2004)CrossRefGoogle Scholar
  89. 89.
    Sporns, O., Tononi, G., Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1(4), e42 (2005)CrossRefGoogle Scholar
  90. 90.
    Stam, C.J., Reijneveld, J.C.: Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1 (2007)Google Scholar
  91. 91.
    Straehle, C., Köthe, U., Knott, G., Hamprecht, F.: Carving: Scalable Interactive Segmentation of Neural Volume Electron Microscopy Images. In: MICCAI, pp. 657–664 (2011)Google Scholar
  92. 92.
    Ten Caat, M., Maurits, N.M., Roerdink, J.B.T.M.: Functional unit maps for data-driven visualization of high-density EEG coherence. In: Proceedings of Eurographics/IEEE VGTC Symposium on Visualization (EuroVis), pp. 259–266 (2007)Google Scholar
  93. 93.
    Ten Caat, M.: Multichannel EEG visualization. Ph.D. thesis, Institute of Mathematics and Computing Science, University of Groningen, The Netherlands (2008)Google Scholar
  94. 94.
    Ten Caat, M., Maurits, N.M., Roerdink, J.B.T.M.: Data-driven visualization and group analysis of multichannel EEG coherence with functional units. IEEE Trans. Vis. Comput. Graph. 14(4), 756–771 (2008)CrossRefGoogle Scholar
  95. 95.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48(4), 577–582 (2002)CrossRefGoogle Scholar
  96. 96.
    Tuch, D.S.: Qball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004)CrossRefGoogle Scholar
  97. 97.
    Türetken, E., González, G., Blum, C., Fua, P.: Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics 9(2), 279–302 (2011)CrossRefGoogle Scholar
  98. 98.
    Valiant, L.G.: A quantitative theory of neural computation. Biol. Cybern. 95(3), 205–211 (2006)MATHCrossRefGoogle Scholar
  99. 99.
    Van Dixhoorn, A., Vissers, B., Ferrarini, L., Milles, J., Botha, C.P.: Visual analysis of integrated resting state functional brain connectivity and anatomy. In: Proc. Eurographics Workshop on Visual Computing for Biomedicine, VCBM, Leipzig, Germany, pp. 57–64 (2010)Google Scholar
  100. 100.
    Varshney, L.R., Chen, B.L., Paniagua, E., Hall, D.H., Chklovskii, D.B.: Structural properties of the caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7(2), 21 (2011)Google Scholar
  101. 101.
    Vazquez-Reina, A., Pfister, H., Miller, E.L.: Segmentation Fusion for Connectomics. International Conference on Computer Vision pp. 1–8 (2011)Google Scholar
  102. 102.
    Vilanova, A., Zhang, S., Kindlmann, G., Laidlaw, D.H.: An introduction to visualization of diffusion tensor imaging and its applications. In: Visualization and Image Processing of Tensor Fields. Springer (2005)Google Scholar
  103. 103.
    Vitaladevuni, S.N.: Co-clustering of image segments using convex optimization applied to em neuronal reconstruction. IEEE Conference on Computer Vision and Pattern Recognition pp. 2203–2210 (2010)Google Scholar
  104. 104.
    Walter, T., Shattuck, D.W., Baldock, R., Bastin, M.E., Carpenter, A.E., Duce, S., Ellenberg, J., Fraser, A., Hamilton, N., Pieper, S.: Ragan, M.a., Schneider, J.E., Tomancak, P., Hériché, J.K.: Visualization of image data from cells to organisms. Nat. Methods 7(3s), S26–S41 (2010)Google Scholar
  105. 105.
    Wan, Y., Otsuna, H., Chien, C.B., Hansen, C.: An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research. IEEE Trans. Vis. Comput. Graph. 15(6), 1489–1496 (2009)CrossRefGoogle Scholar
  106. 106.
    White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the nervous system of the nematode caenorhabditis elegans. Philos. Trans. R. Soc. B Biol. Sci. 314(1165), 1–340 (1986)CrossRefGoogle Scholar
  107. 107.
    Worsley, K.J., Chen, J., Lerch, J., Evans, A.C.: Comparing functional connectivity via thresholding correlations and singular value decomposition. Philos. Trans. R. Soc. B Biol. Sci. 360(1457), 913–920 (2005)CrossRefGoogle Scholar
  108. 108.
    Zalesky, A., Fornito, A., Bullmore, E.T.: Network-based statistic: identifying differences in brain networks. Neuroimage 53(4), 1197–1207 (2010)CrossRefGoogle Scholar
  109. 109.
    Zhang, S., Demiralp, C., Laidlaw, D.H.: Visualizing diffusion tensor MR images using streamtubes and streamsurfaces. IEEE Trans. Vis. Comput. Graph. 9(4), 454–462 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Hanspeter Pfister
    • 1
  • Verena Kaynig
    • 1
  • Charl P. Botha
    • 2
  • Stefan Bruckner
    • 3
  • Vincent J. Dercksen
    • 4
  • Hans-Christian Hege
    • 4
  • Jos B. T. M. Roerdink
    • 5
  1. 1.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.vxlabsSomerset WestSA
  3. 3.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyWienAustria
  4. 4.Department of Visualization and Data AnalysisZuse Institute BerlinBerlinGermany
  5. 5.Johann Bernoulli Institute for Mathematics and Computer ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations