Fusion of Visual Channels

  • Min ChenEmail author
  • Klaus Mueller
  • Anders Ynnerman
Part of the Mathematics and Visualization book series (MATHVISUAL)


In this chapter, we consider the need in multifield visualization to depict information contained in two or more fields in a compositional manner. There are many different visual channels, some of which are more commonly seen in visualization than others. Channel fusion occurs when two or more visual entities have to share the same screen space. By applying appropriate constructive operations on visual channels in the composition, one may encode the integration as well as separation of the underlying information depicted by the original channels. One special situation is where multiple fields are a set of fields from different temporal steps, which imposes additional constraints on the use of visual channels. It is inevitable that the availability of visual channels will not be able to scale up to a large number of visual channels. Hence, we consider briefly several general-purpose data mapping methods that can be used to reduce the complexity of visual mapping.


Linear Discriminant Analysis Visual Mapping Optical Channel Visual Channel Scene Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bertin, J.: Semiology of Graphics: Diagrams, Networks. ESRI Press, Maps (2008)Google Scholar
  2. 2.
    Botchen, R.P., Bachthaler, S., Schick, F., Chen, M., Mori, G., Weiskopf, D., Ertl, T.: Action-based multifield video visualization. IEEE Trans. Vis. Comput. Graphics 14(4), 885–899 (2008)CrossRefGoogle Scholar
  3. 3.
    Cai, W., Sakas, G.: Data intermixing and multivolume rendering. Comput. Graphics Forum 18(3), 359–368 (1999)Google Scholar
  4. 4.
    Chen, M.: Combining point clouds and volume objects in volume scene graphs. In: Proceedings of Volume Graphics pp. 127–135 (2005)Google Scholar
  5. 5.
    Chen, M., Silver, D., Winter, A.S., Singh, V., Cornea, N.: Spatial transfer functions—a unified approach to specifying deformation in volume modeling and animation. In: Proceedings of Eurographics/ACM Volume Graphics, pp. 35–44 (2003)Google Scholar
  6. 6.
    Chen, M., Tucker, J.V.: Constructive volume geometry. Comput. Graphics Forum 19(4), 281–293 (2000). A short version of the paper was presented in VG99 (July 1999)Google Scholar
  7. 7.
    Chen, M., Floridi, L.: An Analysis of Information in Visualisation. Synthese 190(16), 3421-3438 (2013)Google Scholar
  8. 8.
    Fang, S., Dai Srinivasan, R.: Volumetric CSG—a model-based volume visualisation approach. In: Proceedings of 6th International Conference in Central Europe on Computer Graphics and Visualisation, pp. 88–95 (1998)Google Scholar
  9. 9.
    Haidacher, M., Bruckner, S., Kanitsar, A., Gröller, M.E.: Information-based transfer functions for multimodal visualization. In: Proceedings of Eurographics Workshop on Visual Computing for Biomedicine (2008)Google Scholar
  10. 10.
    Hsu, W.H., Mei, J., Correa, C.D., Ma, K.L.: Depicting time evolving flow with illustrative visualization techniques. In: Proceedings of International Conference on Arts and Technology (ArtsIT2009) (2009)Google Scholar
  11. 11.
    Johnson, C., Sanderson, A.: A next step: visualizing errors and uncertainty. IEEE Comput. Graphics Appl. 23(5), 6–10 (2003)CrossRefGoogle Scholar
  12. 12.
    Joshi, A., Rheingans, P.: Illustration-inspired techniques for visualizing time-varying data. In: Proceedings of IEEE Visualization, pp. 679–686 (2005)Google Scholar
  13. 13.
    Laramee, R.S., Hauser, H., Doleisch, H., Post, F.H., Vrolijk, B., Weiskopf, D.: The state of the art in flow visualization: dense and texture-based techniques. Comput. Graphics Forum 23(2), 203–221 (2004)CrossRefGoogle Scholar
  14. 14.
    Lawrence, J., Arietta, S., Kazhdan, M., Lepagne, D., Ogan, C.: A user-assisted approach to visualizing multidimensional images. IEEE Trans. Vis. Comput. Graphics 17(10), 1487–1498 (2011)Google Scholar
  15. 15.
    Lundstrom, C., Ljung, P., Persson, A., Ynnerman, A.: Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Trans. Vis. Comput. Graphics 13(6), 1648–1655 (2007)CrossRefGoogle Scholar
  16. 16.
    McLoughlin, A., Laramee, R.S., Peikert, R., Post, F.H., Chen, M.: Over two decades of integration-based, geometric flow visualization. Comput. Graphics Forum 29(6), 1807–1829 (2010)CrossRefGoogle Scholar
  17. 17.
    Nadeau, D.R.: Volume scene graphs. In: Proceedings of IEEE Symposium on Volume Visualization (2000)Google Scholar
  18. 18.
    Pang, A.T., Wittenbrink, C.M., Lodha, S.K.: Approaches to uncertainty visualization. Vis. Comput. 13, 370–390 (1997)CrossRefGoogle Scholar
  19. 19.
    Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S., Doleisch, H.: The state of the art in flow visualization: feature extraction and tracking. Comput. Graphics Forum 22(4), 775–792 (2003)CrossRefGoogle Scholar
  20. 20.
    Treavett, S., Chen, M.: Pen-and-ink rendering in volume visualization. In: Proceedings of IEEE Visualization, pp. 203–209 (2000)Google Scholar
  21. 21.
    Wang, S.M., Kaufman, A.: Volume sampled voxelization of geometric primitives. In: Proceedings of IEEE Symposium on Volume Visualization, pp. 78–84 (1993)Google Scholar
  22. 22.
    Winter, A.S., Chen, M.: vlib: a volume graphics API. In: Proceedings of Volume Graphics, pp. 133–147. Springer Wien New York (2001)Google Scholar
  23. 23.
    Woodring, J., Shen, H.W.: Multi-variate, time varying, and comparative visualization with contextual cues. IEEE Trans. Vis. Comput. Graphics 12(5), 909–916 (2006)CrossRefGoogle Scholar
  24. 24.
    Woodring, J., Wang, C., Shen, H.W.: High dimensional direct rendering of time-varying volumetric data. In: Proceedings of IEEE Visualization, pp. 417–424 (2003)Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Oxford e-Research CentreUniversity of OxfordOxfordUK
  2. 2.Department of Computer ScienceStony Brook UniversityStony BrookUSA
  3. 3.Norrköping Visualization CenterLinköpings UniversitetLinköpingsSweden

Personalised recommendations