Microforming Processes

Chapter

Abstract

With the global trend of product miniaturization, the market demands for microparts are increasing tremendously and state-of-the-art micromanufacturing processes for fabrication of microparts thus become critical. Microforming, as one of the micromanufacuring processes, provides a promising approach to fabricating metallic microparts, such as connector pin, miniature screw, microgear, microshaft, chip leadframe, and IC-socket.

References

  1. 1.
    Engel U, Eckstein R (2002) Microforming—from basic research to its realization. J Mater Process Technol 125:35–44CrossRefGoogle Scholar
  2. 2.
    Vollertsen F, Biermann D, Hansen HN, Jawahir IS, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Ann Manuf Technol 58(2):566–587CrossRefGoogle Scholar
  3. 3.
    Geiger M, Vollertsen F, Kals R (1996) Fundamentals on the manufacturing of sheet metal microparts. CIRP Ann Manuf Technol 45(1):277–282CrossRefGoogle Scholar
  4. 4.
    Geiger M, Meßner A, Engel U (1997) Production of microparts—size effects in bulk metal forming, similarity theory. Prod Eng Res Dev 4(1):55–58Google Scholar
  5. 5.
    Baek SW, Oh SI, Rhim SH (2006) Lubrication for micro forming of ultra thin metal foil. CIRP Ann Manuf Technol 55(1):295–298CrossRefGoogle Scholar
  6. 6.
    Engel U (2006) Tribology in microforming. Wear 260(3):265–273CrossRefGoogle Scholar
  7. 7.
    Vollertsen F, Hu Z (2006) Tribological size effects in sheet metal forming measured by a strip drawing test. CIRP Ann Manuf Technol 55(1):291–294CrossRefGoogle Scholar
  8. 8.
    Peng LF, Lai XM, Lee HJ, Song JH, Ni J (2010) Friction behavior modeling and analysis in micro/meso scale metal forming process. Mater Des 31(4):1953–1961CrossRefGoogle Scholar
  9. 9.
    Guo B, Gong F, Wang CJ, Shan DB (2010) Size effect on friction in scaled down strip drawing. J Mater Sci 45(15):4067–4072CrossRefGoogle Scholar
  10. 10.
    Rosochowski A, Presz W, Olejnik L, Richert M (2007) Micro-extrusion of ultra-fine grained aluminium. Int J Adv Manuf Technol 33(1–2):137–146CrossRefGoogle Scholar
  11. 11.
    Siopis MS, Kinsey BL (2010) Experimental investigation of grain and specimen size effects during electrical-assisted forming. J Manuf Sci Eng Trans ASME 132(2)Google Scholar
  12. 12.
    Diehl A, Engel U, Geiger M (2010) Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils. Int J Adv Manuf Technol 47(1–4):53–61CrossRefGoogle Scholar
  13. 13.
    Messner A, Engel U, Kals R, Vollertsen F (1994) Size effect in the FE-simulation of micro-forming processes. J Mater Process Technol 45(1–4):371–376CrossRefGoogle Scholar
  14. 14.
    Shan DB, Wang CJ, Guo B, Wang XW (2009) Effect of thickness and grain size on material behavior in micro-bending. Trans Nonferrous Met Soc China 19:S507–S510CrossRefGoogle Scholar
  15. 15.
    Wang CJ, Shan DB, Zhou J, Guo B, Sun LN (2007) Size effects of the cavity dimension on the microforming ability during coining process. J Mater Process Technol 187:256–259CrossRefGoogle Scholar
  16. 16.
    Ike H, Plancak M (1998) Coining process as a means of controlling surface microgeometry. J Mater Process Technol 80–1:101–107CrossRefGoogle Scholar
  17. 17.
    Ike H (2003) Surface deformation vs. bulk plastic deformation— a key for microscopic control of surfaces in metal forming. J Mater Process Technol 138(1–3):250–255CrossRefGoogle Scholar
  18. 18.
    Ma X, Lapovok R, Gu C, Molotnikov A, Estrin Y, Pereloma EV, Davies CHJ, Hodgson PD (2009) Deep drawing behaviour of ultrafine grained copper: modelling and experiment. J Mater Sci 44(14):3807–3812CrossRefGoogle Scholar
  19. 19.
    Raulea LV, Goijaerts AM, Govaert LE, Baaijens FPT (2001) Size effects in the processing of thin metal sheets. J Mater Process Technol 115(1):44–48CrossRefGoogle Scholar
  20. 20.
    Egerer E, Engel U (2004) Process characterization and material flow in microforming at elevated temperatures. J Manuf Proces 6(1):1–6CrossRefGoogle Scholar
  21. 21.
    Mirzai MA, Manabe KI, Mabuchi T (2008) Deformation characteristics of microtubes in flaring test. J Mater Process Technol 201(1–3):214–219CrossRefGoogle Scholar
  22. 22.
    Joo BY, Oh SI, Son YK (2004) Forming of micro channels with ultra thin metal foils. CIRP Ann Manuf Technol 53(1):243–246CrossRefGoogle Scholar
  23. 23.
    Gau JT, Principe C, Yu M (2007) Springback behavior of brass in micro sheet forming. J Mater Process Technol 191(1–3):7–10CrossRefGoogle Scholar
  24. 24.
    Chen CC, Jiang CP (2011) Grain size effect in the micro-V-bending process of thin metal sheets. Mater Manuf Processes 26(1):78–83CrossRefGoogle Scholar
  25. 25.
    Fu MH, Chan KC, Lee WB, Chan LK (1997) Springback in the roller forming of integrated circuit leadframes. J Mater Process Technol 66(1–3):107–111CrossRefGoogle Scholar
  26. 26.
    Parasiz SA, Kinsey B, Krishnan N, Cao J, Li M (2007) Investigation of deformation size effects during microextrusion. J Manuf Sci Eng Trans ASME 129(4):690–697CrossRefGoogle Scholar
  27. 27.
    Parasiz SA, VanBenthysen R, Kinsey BL (2010) Deformation size effects due to specimen and grain size in microbending. J Manuf Sci Eng Trans ASME 132(1):011018CrossRefGoogle Scholar
  28. 28.
    Manabe K, Shimizu T, Koyama H, Yang M, Ito K (2008) Validation of FE simulation based on surface roughness model in micro-deep drawing. J Mater Process Technol 204(1–3):89–93CrossRefGoogle Scholar
  29. 29.
    Wang CJ, Guo B, Shan DB (2009) Effect of die cavity dimension on micro U deep drawing behaviour with T2 foil. Trans Nonferrous Met Soc China 19:S790–S794CrossRefGoogle Scholar
  30. 30.
    Qin Y (2006) Micro-forming and miniature manufacturing systems—development needs and perspectives. J Mater Process Technol 177(1–3):8–18CrossRefGoogle Scholar
  31. 31.
    Arentoft M, Eriksen RS, Hansen HN, Paldan NA (2011) Towards the first generation micro bulk forming system. CIRP Ann Manuf Technol 60(1):335–338CrossRefGoogle Scholar
  32. 32.
    Fu MW, Chan WL (2012) A review on the state-of-the-art microforming technologies. Int J Adv Manuf Technol 67:2411–2437Google Scholar
  33. 33.
    Qin Y (2010) Micro-manufacturing engineering and technology, vol xiv, 1st edn. William Andrew, Oxford, 414 pGoogle Scholar
  34. 34.
    Hu Z, Schubnov A, Vollertsen F (2012) Tribological behaviour of DLC-films and their application in micro deep drawing. J Mater Process Technol 212(3):647–652CrossRefGoogle Scholar
  35. 35.
    Gong F, Guo B, Wang C, Shan D (2010) Effects of lubrication conditions on micro deep drawing. Microsyst Technol 16(10):1741–1747CrossRefGoogle Scholar
  36. 36.
    Vollertsen F, Hu Z, Niehoff HS, Theiler C (2004) State of the art in micro forming and investigations into micro deep drawing. J Mater Process Technol 151(1–3):70–79CrossRefGoogle Scholar
  37. 37.
    Saotome Y, Yasuda K, Kaga H (2001) Microdeep drawability of very thin sheet steels. J Mater Process Technol 113(1–3):641–647CrossRefGoogle Scholar
  38. 38.
    Vollertsen F, Hu Z (2010) Analysis of punch velocity dependent process window in micro deep drawing. Prod Eng Res Devel 4(6):553–559CrossRefGoogle Scholar
  39. 39.
    Hu Z, Wielage H, Vollertsen F (2010) Effect of strain rate on the forming limit diagram of thin aluminum foil. In: International Forum on Micro Manufacturing 2010. Gifu, JapanGoogle Scholar
  40. 40.
    Fu MW, Yang B, Chan WL (2013) Experimental and simulation studies of micro blanking and deep drawing compound process using copper sheet. J Mater Process Technol 213(1):101–110CrossRefGoogle Scholar
  41. 41.
    Fu M, Chan W, Yang B (2011) Study of size effects on material deformation behaviour in micro-deep drawing of copper sheet metal. Steel Research International, pp 985–990 (Special edition)Google Scholar
  42. 42.
    Chan WL, Fu MW (2011) Integrated product and process design for micro-product development via microforming. In: International conference on innovative methods in product design, Venice, ItalyGoogle Scholar
  43. 43.
    Urie VM, Wain HL (1952) Plastic deformation of coarse-grained aluminum. J Inst Met 81:153–159Google Scholar
  44. 44.
    Dai YZ, Chiang FP (1992) On the mechanism of plastic-deformation induced surface-roughness. J Eng Mater Technol Trans ASME 114(4):432–438CrossRefGoogle Scholar
  45. 45.
    Wilson WRD, Lee WM (2001) Mechanics of surface roughening in metal forming processes. J Eng Mater Technol Trans ASME 123(2):279–283Google Scholar
  46. 46.
    Justinger H, Hirt G (2009) Estimation of grain size and grain orientation influence in microforming processes by Taylor factor considerations. J Mater Process Technol 209(4):2111–2121CrossRefGoogle Scholar
  47. 47.
    Mahabunphachai S, Cora ON, Koc M (2010) Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates. J Power Sources 195(16):5269–5277CrossRefGoogle Scholar
  48. 48.
    Turan C, Cora ON, Koc M (2011) Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells. Int J Hydrogen Energy 36(19):12370–12380CrossRefGoogle Scholar
  49. 49.
    Chan WL, Fu MW, Lu J (2011) The size effect on micro deformation behaviour in micro-scale plastic deformation. Mater Des 32(1):198–206CrossRefGoogle Scholar
  50. 50.
    Chan WL, Fu MW (2012) Experimental and simulation based study on micro-scaled sheet metal deformation behavior in microembossing process. Mater Sci Eng A 556:60–67CrossRefGoogle Scholar
  51. 51.
    Thiruvarudchelvan S, Tan MJ (2004) The drawing of conical cups using an annular urethane pad. J Mater Process Technol 147(2):163–166CrossRefGoogle Scholar
  52. 52.
    Thiruvarudchelvan S, Sritharan T (2003) Properties of hemispherical cups drawn using a flexible tool. J Mater Process Technol 134(3):310–317CrossRefGoogle Scholar
  53. 53.
    Thiruvarudchelvan S (2002) The potential role of flexible tools in metal forming. J Mater Process Technol 122(2–3):293–300CrossRefGoogle Scholar
  54. 54.
    Dirikolu AH, Akdemir E (2004) Computer aided modelling of flexible forming process. J Mater Process Technol 148(3):376–381CrossRefGoogle Scholar
  55. 55.
    Ramezani M, Ripin ZM, Ahmad R (2010) Sheet metal forming with the aid of flexible punch, numerical approach and experimental validation. CIRP J Manuf Sci Technol 3(3):196–203CrossRefGoogle Scholar
  56. 56.
    Fu MW, Lu SQ, Huang MH (1996) High-precision sheet-metal workpieces manufactured by flexible-die forming using a viscoplastic pressure-carrying medium. J Mater Process Technol 62(1–3):70–75CrossRefGoogle Scholar
  57. 57.
    Fu MW, Huang MH (2001) Process parameters and products quality analysis of flexible-die deep-drawing using a viscoplastic pressure-carrying medium. J Mater Process Technol 115(3):384–390CrossRefMathSciNetGoogle Scholar
  58. 58.
    Liu YX, Hua L (2010) Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming. J Power Sources 195(11):3529–3535CrossRefGoogle Scholar
  59. 59.
    Liu YX, Hua L, Lan JA, Wei X (2010) Studies of the deformation styles of the rubber-pad forming process used for manufacturing metallic bipolar plates. J Power Sources 195(24):8177–8184CrossRefGoogle Scholar
  60. 60.
    Peng LF, Hu P, Lai XM, Mei DQ, Ni J (2009) Investigation of micro/meso sheet soft punch stamping process—simulation and experiments. Mater Des 30(3):783–790CrossRefGoogle Scholar
  61. 61.
    Fu MW, Chan WL (2013) Micro-scaled progressive forming of bulk micropart via directly using sheet metals. Mater Des 49:774–783CrossRefGoogle Scholar
  62. 62.
    Hatanaka N, Yamaguchi K, Takakura N, Iizuka T (2003) Simulation of sheared edge formation process in blanking of sheet metals. J Mater Process Technol 140:628–634CrossRefGoogle Scholar
  63. 63.
    Chan WL, Fu MW (2013) Meso-scaled progressive forming of bulk cylindrical and flanged parts using sheet metal. Mater Des 43:249–257CrossRefGoogle Scholar
  64. 64.
    Kals TA, Eckstein R (2000) Miniaturization in sheet metal working. J Mater Process Technol 103(1):95–101CrossRefGoogle Scholar
  65. 65.
    Joo BY, Rhim SH, Oh SI (2005) Micro-hole fabrication by mechanical punching process. J Mater Process Technol 170(3):593–601CrossRefGoogle Scholar
  66. 66.
    Klein M, Hadrboletz A, Weiss B, Khatibi G (2001) The ‘size effect’ on the stress-strain, fatigue and fracture properties of thin metallic foils. Mater Sci Eng Struct Mater Prop Microstruct Process 319:924–928CrossRefGoogle Scholar
  67. 67.
    Weiss B, Groger V, Khatibi G, Kotas A, Zimprich P, Stickler R, Zagar B (2002) Characterization of mechanical and thermal properties of thin Cu foils and wires. Sens Actuat Phys 99(1–2):172–182CrossRefGoogle Scholar
  68. 68.
    Fu MW, Chan WL (2011) Geometry and grain size effects on the fracture behavior of sheet metal in micro-scale plastic deformation. Mater Des 32(10):4738–4746CrossRefGoogle Scholar
  69. 69.
    Xu J, Guo B, Shan DB (2011) Size effects in micro blanking of metal foil with miniaturization. Int J Adv Manuf Technol 56(5–8):515–522CrossRefGoogle Scholar
  70. 70.
    Joo BY, Oh SI, Jeon BH (2001) Development of micro punching system. CIRP Ann Manuf Technol 50(1):191–194CrossRefGoogle Scholar
  71. 71.
    Rhim SH, Son YK, Oh SI (2005) Punching of ultra small size hole array. CIRP Ann Manuf Technol 54(1):261–264CrossRefGoogle Scholar
  72. 72.
    Takahashi F, Nishimura T, Suzuki I, Kudo H (1991) A method of blanking from amorphous alloy foils using rubber tool. CIRP Ann Manuf Technol 40(1):315–318CrossRefGoogle Scholar
  73. 73.
    Watari H, Ona H, Yoshida Y (2003) Flexible punching method using an elastic tool instead of a metal punch. J Mater Process Technol 137(1–3):151–155CrossRefGoogle Scholar
  74. 74.
    Kim GY, Koc M, Ni J (2008) Experimental and numerical investigations on microcoining of stainless steel 304. J Manuf Sci Eng Trans ASME 130(4):041017CrossRefGoogle Scholar
  75. 75.
    Kim G-Y, Koc M, Ni J (2006) Investigation on coining of micro-features using pure copper. ASME Conf Proc 47624:277–283Google Scholar
  76. 76.
    Kalpakjian S, Schmid SR (2003) Manufacturing processes for engineering materials, vol xvii, 4th edn. Prentice Hall, Upper Saddle River, 954 pGoogle Scholar
  77. 77.
    Eriksen R, Weidel S, Hansen H (2010) Tribological influence of tool surface roughness within microforming. IntJ Mater Form 3:419–422CrossRefGoogle Scholar
  78. 78.
    Krishnan N, Cao J, Dohda K (2007) Study of the size effects on friction conditions in microextrusion—part I: microextrusion experiments and analysis. J Manuf Sci Eng Trans ASME 129(4):669–676CrossRefGoogle Scholar
  79. 79.
    Takatsuji N, Hosokawa S, Dohda K, Makino T (2010) Influence of friction behavior on forming of micro-parts by forward-backward extrusion of 6063 aluminum alloy. In: International forum on micro manufacturing 2010, Gifu, JapanGoogle Scholar
  80. 80.
    Nakamura T, Bay N, Zhang ZL (1997) FEM simulation of friction testing method based on combined forward rod-backward can extrusion. J Tribol Trans ASME 119(3):501–506CrossRefGoogle Scholar
  81. 81.
    Chan WL, Fu MW, Lu J (2011) Experimental and simulation study of deformation behavior in micro-compound extrusion process. Mater Des 32(2):525–534CrossRefGoogle Scholar
  82. 82.
    Chan WL, Fu MW, Yang B (2011) Study of size effect in micro-extrusion process of pure copper. Mater Des 32(7):3772–3782CrossRefGoogle Scholar
  83. 83.
    Bakhshi-Koybari M (2002) A theoretical and experimental study of friction in metal forming by the use of the forward extrusion process. J Mater Process Technol 125:369–374CrossRefGoogle Scholar
  84. 84.
    Wagener HW, Wolf J (1994) Coefficient of friction in cold-extrusion. J Mater Process Technol 44(3–4):283–291CrossRefGoogle Scholar
  85. 85.
    Depierre V (1970) Experimental measurement of forces during extrusion and correlation with thoery. Mech Eng 92(2):73Google Scholar
  86. 86.
    Zhang Q, Arentoft M, Bruschi S, Dubar L, Felder E (2008) Measurement of friction in a cold extrusion operation: study by numerical simulation of four friction tests. IntJ Mater Form 1:1267–1270CrossRefGoogle Scholar
  87. 87.
    ASM International. Handbook Committee (1990) ASM handbook, vols 1–8, 14B, 10th edn. ASM International, Materials Park, pp 18–21Google Scholar
  88. 88.
    Schrader T, Shirgaokar M, Altan T (2007) A critical evaluation of the double cup extrusion test for selection of cold forging lubricants. J Mater Process Technol 189(1–3):36–44CrossRefGoogle Scholar
  89. 89.
    Chinesta F, Cueto E, Engel U, Rosochowski A, Geißdörfer S, Olejnik L (2007) Microforming and nanomaterials. In: Advances in material forming. Springer, Paris, pp 99–124Google Scholar
  90. 90.
    Geiger M, Kleiner M, Eckstein R, Tiesler N, Engel U (2001) Microforming. CIRP Ann Manuf Technol 50(2):445–462CrossRefGoogle Scholar
  91. 91.
    Deng JH, Fu MW, Chan WL (2011) Size effect on material surface deformation behavior in micro-forming process. Mater Sci Eng A 528(13–14):4799–4806CrossRefGoogle Scholar
  92. 92.
    Tiesler N (2002) Microforming—size effects in friction and their influence on extrusion processes. Wire 52(1):34–38Google Scholar
  93. 93.
    Tiesler N, Engel U, Geiger M (1999) Forming of microparts—effects of miniaturization on friction. In: 6th international conference on technology of plasticityGoogle Scholar
  94. 94.
    Chang, CC, Wang TC (2010) Effects of grain size on micro backward Extrusion of copper. Adv Mater Process Technol Pts 1 and 2 83–86:1092–1098Google Scholar
  95. 95.
    Eichenhueller B, Egerer E, Engel U (2007) Microforming at elevated temperature—forming and material behaviour. Int J Adv Manuf Technol 33(1–2):119–124CrossRefGoogle Scholar
  96. 96.
    Eichenhüller B, Engel U, Geißdörfer S (2008) Process parameter interaction in microforming. IntJ Mater Form 1:451–454CrossRefGoogle Scholar
  97. 97.
    Jimma T, Kasuga Y, Iwaki N, Miyazawa O, Mori E, Ito K, Hatano H (1998) An application of ultrasonic vibration to the deep drawing process. J Mater Process Technol 80–1:406–412CrossRefGoogle Scholar
  98. 98.
    Siegert K, Ulmer J (2001) Superimposing ultrasonic waves on the dies in tube and wire drawing. J Eng Mater Technol Trans ASME 123(4):517–523CrossRefGoogle Scholar
  99. 99.
    Murakawa M, Jin M (2001) The utility of radially and ultrasonically vibrated dies in the wire drawing process. J Mater Process Technol 113(1–3):81–86CrossRefGoogle Scholar
  100. 100.
    Mousavi SAAA, Feizi H, Madoliat R (2007) Investigations on the effects of ultrasonic vibrations in the extrusion process. J Mater Process Technol 187:657–661CrossRefGoogle Scholar
  101. 101.
    Hung JC, Tsai YC, Hung CH (2007) Frictional effect of ultrasonic-vibration on upsetting. Ultrasonics 46(3):277–284CrossRefGoogle Scholar
  102. 102.
    Bunget C, Ngaile G (2011) Influence of ultrasonic vibration on micro-extrusion. Ultrasonics 51(5):606–616CrossRefGoogle Scholar
  103. 103.
    Yao Z, Kim G-Y, Faidley L, Zou Q, Mei D, Chen Z (2012) Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting. J Mater Process Technol 212(3):640–646CrossRefGoogle Scholar
  104. 104.
    Chan WL, Fu MW (2012) Experimental studies of plastic deformation behaviors in microheading process. J Mater Process Technol 212(7):1501–1512CrossRefGoogle Scholar
  105. 105.
    Chan WL, Fu MW (2011) Experimental studies and numerical modeling of the specimen and grain size effects on the flow stress of sheet metal in microforming. Mater Sci Eng A 528(25–26):7674–7683CrossRefGoogle Scholar
  106. 106.
    Hirota K (2007) Fabrication of micro-billet by sheet extrusion. J Mater Process Technol 191(1–3):283–287CrossRefGoogle Scholar
  107. 107.
    Atsushi D, Wong CC, Lim SCV, Aue-u-lan Y, Chew MQ Capability development of progressive extrusion forming of hollow miniature/micro pin form sheet. In: International forum on micro manufacturing 2010, Gifu, JapanGoogle Scholar
  108. 108.
    Merklein M, Stellin T, Engel U (2011) Simulation of a full forward extrusion process from metal strip. AIP Conf Proc 1353(1):493–498CrossRefGoogle Scholar
  109. 109.
    Lim SCV, Atsushi D, Chew MQ (2010) Effect of punch size and annealing on the progressive forming of micro-pin from a sheet metal. In: International forum on micro manufacturing 2010, Gifu, JapanGoogle Scholar
  110. 110.
    Xu J, Guo B, Wang C, Shan D (2012) Blanking clearance and grain size effects on micro deformation behavior and fracture in micro-blanking of brass foil. Int J Mach Tools Manuf 60:27–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
  2. 2.The Hong Kong Polytechnic UniversityHong KongPeople’s Republic of China

Personalised recommendations