Tissue Engineering and Regenerative Medicine Strategies for the Treatment of Osteochondral Lesions

  • Ibrahim Fatih CengizEmail author
  • Joaquim Miguel Oliveira
  • Rui Luís Reis


There is an unmet clinical need for repairing osteochondral (OC) lesions. Tissue engineering and regenerative medicine (TERM) strategies advance with the possibility of regenerating different tissues by means of using cells, scaffolds and growth factors, alone or together. The use of bioreactor systems for developing mature tissues in vitro is also appealing. This book chapter aims to overview the main aspects related to structure and functions of articular cartilage, subchondral bone, and bone. The components of the tissue engineering and the most relevant reports on their use for treating OC lesions are concisely covered. Several treatment strategies are available; however, the gold standard does not exist. The biofunctional knowledge of these tissues has been uncovered by the development of advanced characterization techniques including medical imaging allowing visualization from sub-cellular to macro level. These techniques have been helping scientists not only to understand how these tissues function but also to develop multiscale TERM strategies. Thus, this hot topic is also briefly discussed.


Osteochondral  Tissue engineering Scaffolds Multiscale strategies  Regenerative medicine 



The authors thank the financial support of the MultiScaleHuman project (Contract number: MRTN-CT-2011-289897) in the Marie Curie Actions—Initial Training Networks.


  1. 1.
    Sanders, R. K., & Crim, J. R. (2001). Osteochondral injuries. Seminars in Ultrasound Ct and Mri, 22(4), 352–370.Google Scholar
  2. 2.
    Buckwalter, J. A., & Mankin, H. J. (1997). Articular cartilage. Part II. Degeneration and osteoarthrosis, repair, regeneration, and transplantation. Journal of Bone and Joint Surgery-American Volume, 79A(4), 612–632.Google Scholar
  3. 3.
    Westacott, C. I., & Sharif, M. (1996). Cytokines in osteoarthritis: Mediators or markers of joint destruction? Seminars in Arthritis and Rheumatism, 25(4), 254–272.Google Scholar
  4. 4.
    Goldring, M. B., & Goldring, S. R. (2007). Osteoarthritis. Journal of Cellular Physiology, 213(3), 626–634.Google Scholar
  5. 5.
    Nesic, D., Whiteside, R., Brittberg, M., Wendt, D., Martin, I., & Mainil-Varlet, P. (2006). Cartilage tissue engineering for degenerative joint disease. Advanced Drug Delivery Reviews, 58(2), 300–322.Google Scholar
  6. 6.
    Goldring, M. B. (2000). The role of the chondrocyte in osteoarthritis. Arthritis and Rheumatism, 43(9), 1916–1926.Google Scholar
  7. 7.
    Buckwalter, J. A., Mankin, H. J., & Grodzinsky, A. J. (2005). Articular cartilage and osteoarthritis. Instructional Course Lectures, 54, 465–480.Google Scholar
  8. 8.
    Bhosale, A. M., & Richardson, J. B. (2008). Articular cartilage: Structure, injuries and review of management. British Medical Bulletin, 87(1), 77–95.Google Scholar
  9. 9.
    Buckwalter, J. A., & Mankin, H. J. (1998). Articular cartilage repair and transplantation. Arthritis and Rheumatism, 41(8), 1331–1342.Google Scholar
  10. 10.
    Hunziker, E. B. (2002). Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage, 10(6), 432–463.Google Scholar
  11. 11.
    Vaquero, J., & Forriol, F. (2012). Knee chondral injuries: Clinical treatment strategies and experimental models. Injury-International Journal of the Care of the Injured, 43(6), 694–705.Google Scholar
  12. 12.
    Wirth, C. J., & Rudert, M. (1996). Techniques of cartilage growth enhancement: A review of the literature. Arthroscopy, 12(3), 300–308.Google Scholar
  13. 13.
    Aigner, T., & Stove, J. (2003). Collagens—major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Advanced Drug Delivery Reviews, 55(12), 1569–1593.Google Scholar
  14. 14.
    Pridie, K. H., & Gordon, G. (1959). A method of resurfacing osteoarthritic knee joints. Journal of Bone and Joint Surgery-British, 41(3), 618–619.Google Scholar
  15. 15.
    Sprague, N. F. (1981). Arthroscopic debriment for degenerative knee-joint disease. Clinical Orthopaedics and Related Research, 160, 118–123.Google Scholar
  16. 16.
    Ficat, R. P., Ficat, C., Gedeon, P., & Toussaint, J. B. (1979). Spongialization—new treatment for diseased patellae. Clinical Orthopaedics and Related Research, 144, 74–83.Google Scholar
  17. 17.
    Martin, I., Miot, S., Barbero, A., Jakob, M., & Wendt, D. (2007). Osteochondral tissue engineering. Journal of Biomechanics, 40(4), 750–765.Google Scholar
  18. 18.
    Heath, C. A., & Magari, S. R. (1996). Mini-review: Mechanical factors affecting cartilage regeneration in vitro. Biotechnology and Bioengineering, 50(4), 430–437.Google Scholar
  19. 19.
    Buckwalter, J. A., & Mankin, H. J. (1997). Articular cartilage. Part I: Tissue design and chondrocyte-matrix interactions. Journal of Bone and Joint Surgery-American Volume, 79A(4), 600–611.Google Scholar
  20. 20.
    Grodzinsky, A. J., Levenston, M. E., Jin, M., & Frank, E. H. (2000). Cartilage tissue remodeling in response to mechanical forces. Annual Review of Biomedical Engineering, 2, 691–713.Google Scholar
  21. 21.
    Kleemann, R. U., Krocker, D., Cedraro, A., Tuischer, J., & Duda, G. N. (2005). Altered cartilage mechanics and histology in knee osteoarthritis: Relation to clinical assessment (ICRS Grade). Osteoarthritis and Cartilage, 13(11), 958–963.Google Scholar
  22. 22.
    Gelse, K., Pöschl, E., & Aigner, T. (2003). Collagens—Structure, function, and biosynthesis. Advanced Drug Delivery Reviews, 55(12), 1531–1546.Google Scholar
  23. 23.
    Armstrong, C. G., & Mow, V. C. (1982). Variations in the intrinsic mechanical properties of human articular-cartilage with age, degeneration and water-content. Journal of Bone and Joint Surgery-American, 64(1), 88–94.Google Scholar
  24. 24.
    Black, J., & Hastings, G. W. (Eds.). (1998). Handbook of biomaterials properties. London: Chapman and Hall.Google Scholar
  25. 25.
    Clarke, B. (2008). Normal bone anatomy and physiology. Clinical Journal of the American Society of Nephrology, 3, S131–S139.Google Scholar
  26. 26.
    Miller, S. C., Saintgeorges, L., Bowman, B. M., & Jee, W. S. S. (1989). Bone lining cells—structure and function. Scanning Microscopy, 3(3), 953–961.Google Scholar
  27. 27.
    Yaszemski, M. J., Payne, R. G., Hayes, W. C., Langer, R., & Mikos, A. G. (1996). Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone. Biomaterials, 17(2), 175–185.Google Scholar
  28. 28.
    Suri, S., & Walsh, D. A. (2012). Osteochondral alterations in osteoarthritis. Bone, 51(2), 204–211.Google Scholar
  29. 29.
    Kawcak, C. E., McIlwraith, C. W., Norrdin, R. W., Park, R. D., & James, S. P. (2001). The role of subchondral bone in joint disease: A review. Equine Veterinary Journal, 33(2), 120–126.Google Scholar
  30. 30.
    Lyons, T. J., McClure, S. F., Stoddart, R. W., & McClure, J. (2006). The normal human chondro-osseous junctional region: Evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. Bmc Musculoskeletal Disorders, 7, 52.Google Scholar
  31. 31.
    Burr, D. B. (2004). Anatomy and physiology of the mineralized tissues: Role in the pathogenesis of osteoarthrosis. Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society, 12 Suppl A, S20–S30.Google Scholar
  32. 32.
    Madry, H., van Dijk, C. N., & Mueller-Gerbl, M. (2010). The basic science of the subchondral bone. Knee Surgery Sports Traumatology Arthroscopy, 18(4), 419–433.Google Scholar
  33. 33.
    Clark, J. M., & Huber, J. D. (1990). The structure of the human subchondral plate. Journal of Bone and Joint Surgery-British, 72(5), 866–873.Google Scholar
  34. 34.
    Li, B. H., & Aspden, R. M. (1997). Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Annals of the Rheumatic Diseases, 56(4), 247–254.Google Scholar
  35. 35.
    Rippon, H. J., & Bishop, A. E. (2004). Embryonic stem cells. Cell Proliferation, 37(1), 23–34.Google Scholar
  36. 36.
    Young, H. E., & Black, A. C. (2004). Adult stem cells. Anatomical Record Part a-Discoveries in Molecular Cellular and Evolutionary Biology, 276A(1), 75–102.Google Scholar
  37. 37.
    Alison, M. R., Poulsom, R., Forbes, S., & Wright, N. A. (2002). An introduction to stem cells. Journal of Pathology, 197(4), 419–423.Google Scholar
  38. 38.
    Corona, B. T., Ward, C. L., Harrison, B. S., & Christ, G. J. (2010). Regenerative medicine: Basic concepts, current status, and future applications. Journal of Investigative Medicine, 58(7), 849–858.Google Scholar
  39. 39.
    Darling, E. M., & Athanasiou, K. A. (2005). Rapid phenotypic changes in passaged articular chondrocyte subpopulations. Journal of Orthopaedic Research, 23(2), 425–432.Google Scholar
  40. 40.
    Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., & Peterson, L. (1994). Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. New England Journal of Medicine, 331(14), 889–895.Google Scholar
  41. 41.
    Bedi, A., Feeley, B. T., & Williams, R. J, I. I. I. (2010). Management of articular cartilage defects of the knee. Journal of Bone and Joint Surgery-American, 92A(4), 994–1009.Google Scholar
  42. 42.
    Caplan, A. I. (1991). Mesenchymal stem-cells. Journal of Orthopaedic Research, 9(5), 641–650.Google Scholar
  43. 43.
    Freyman, T. M., Yannas, I. V., & Gibson, L. J. (2001). Cellular materials as porous scaffolds for tissue engineering. Progress in Materials Science, 46(3–4), 273–282.Google Scholar
  44. 44.
    Kinner, B., Capito, R. M., & Spector, M. (2005). Regeneration of articular cartilage. In: Yannas, I. V. (ed.). Regenerative medicine II: Clinical and preclinical applications, (Vol. 94). Advances in Biochemical Engineering-Biotechnology, (pp. 91–123). New York: Springer.Google Scholar
  45. 45.
    Noeth, U., Rackwitz, L., Steinert, A. F., & Tuan, R. S. (2010). Cell delivery therapeutics for musculoskeletal regeneration. Advanced Drug Delivery Reviews, 62(7–8), 765–783.Google Scholar
  46. 46.
    Puppi, D., Chiellini, F., Piras, A. M., & Chiellini, E. (2010). Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 35(4), 403–440.Google Scholar
  47. 47.
    Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675–3683.Google Scholar
  48. 48.
    Hench, L. L. (1991). Bioceramics—from concept to clinic. Journal of the American Ceramic Society, 74(7), 1487–1510.Google Scholar
  49. 49.
    Best, S. M., Porter, A. E., Thian, E. S., & Huang, J. (2008). Bioceramics: Past, present and for the future. Journal of the European Ceramic Society, 28(7), 1319–1327.Google Scholar
  50. 50.
    Mano, J. F., Silva, G. A., Azevedo, H. S., Malafaya, P. B., Sousa, R. A., Silva, S. S., et al. (2007). Natural origin biodegradable systems in tissue engineering and regenerative medicine: Present status and some moving trends. Journal of the Royal Society Interface, 4(17), 999–1030.Google Scholar
  51. 51.
    Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529–2543.Google Scholar
  52. 52.
    Yan, L.-P., Wang, Y.-J., Ren, L., Wu, G., Caridade, S. G., Fan, J.-B., et al. (2010). Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications. Journal of Biomedical Materials Research Part A, 95A(2), 465–475.Google Scholar
  53. 53.
    Hoshikawa, A., Nakayama, Y., Matsuda, T., Oda, H., Nakamura, K., & Mabuchi, K. (2006). Encapsulation of chondrocytes in photopolymerizable styrenated gelatin for cartilage tissue engineering. Tissue Engineering, 12(8), 2333–2341.Google Scholar
  54. 54.
    Eyrich, D., Brandl, F., Appel, B., Wiese, H., Maier, G., Wenzel, M., et al. (2007). Long-term stable fibrin gels for cartilage engineering. Biomaterials, 28(1), 55–65.Google Scholar
  55. 55.
    Yan, L. P., Oliveira, J. M., Oliveira, A. L., & Reis, R. L. (2012). Development of a bilayered scaffold based on silk fibroin and silk fibroin/nano-calcium phosphate for osteochondral regeneration. Journal of Tissue Engineering and Regenerative Medicine, 6, 24–24.Google Scholar
  56. 56.
    Popa, E. G., Gomes, M. E., & Reis, R. L. (2011). Cell delivery systems using alginate-carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules, 12(11), 3952–3961.Google Scholar
  57. 57.
    Pelaez, D., Huang, C.-Y. C., & Cheung, H. S. (2009). Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells and Development, 18(1), 93–102.Google Scholar
  58. 58.
    Stillaert, F. B., Di Bartolo, C., Hunt, J. A., Rhodes, N. P., Tognana, E., Monstrey, S., et al. (2008). Human clinical experience with adipose precursor cells seeded on hyaluronic acid-based spongy scaffolds. Biomaterials, 29(29), 3953–3959.Google Scholar
  59. 59.
    Oliveira, J. M., Rodrigues, M. T., Silva, S. S., Malafaya, P. B., Gomes, M. E., Viegas, C. A., et al. (2006). Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 27(36), 6123–6137.Google Scholar
  60. 60.
    Rodrigues, A. I., Gomes, M. E., Leonor, I. B., & Reis, R. L. (2012). Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering. Acta Biomaterialia, 8(10), 3765–3776.Google Scholar
  61. 61.
    Oliveira, J. T., Santos, T. C., Martins, L., Picciochi, R., Marques, A. P., Castro, A. G., et al. (2010). Gellan gum injectable hydrogels for cartilage tissue engineering applications: In vitro studies and preliminary in vivo evaluation. Tissue Engineering Part A, 16(1), 343–353.Google Scholar
  62. 62.
    Antunes, J. C., Oliveira, J. M., Reis, R. L., Soria, J. M., Gomez-Ribelles, J. L., & Mano, J. F. (2010). Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: Characterization and assessment of cytotoxicity. Journal of Biomedical Materials Research Part A, 94A(3), 856–869.Google Scholar
  63. 63.
    Xue, D., Zheng, Q., Zong, C., Li, Q., Li, H., Qian, S., et al. (2010). Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Journal of Biomedical Materials Research Part A, 94A(1), 259–270.Google Scholar
  64. 64.
    Erisken, C., Kalyon, D. M., Wang, H., Oernek-Ballanco, C., & Xu, J. (2011). Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and beta-glycerophosphate concentrations. Tissue Engineering Part A, 17(9–10), 1239–1252.Google Scholar
  65. 65.
    Drury, J. L., & Mooney, D. J. (2003). Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials, 24(24), 4337–4351.Google Scholar
  66. 66.
    Uludag, H., De Vos, P., & Tresco, P. A. (2000). Technology of mammalian cell encapsulation. Advanced Drug Delivery Reviews, 42(1–2), 29–64.Google Scholar
  67. 67.
    Temenoff, J. S., & Mikos, A. G. (2000). Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 21(23), 2405–2412.Google Scholar
  68. 68.
    Chan, B. P., & Leong, K. W. (2008). Scaffolding in tissue engineering: General approaches and tissue-specific considerations. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, 17(Suppl 4), 467–479.Google Scholar
  69. 69.
    Nguyen, K. T., & West, J. L. (2002). Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23(22), 4307–4314.Google Scholar
  70. 70.
    Kaur, M., & Srivastava, A. K. (2002). Photopolymerization: A review. Journal of Macromolecular Science-Polymer Reviews, C42(4), 481–512.Google Scholar
  71. 71.
    Jansson, P. E., Lindberg, B., & Sandford, P. A. (1983). Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas-Elodea. Carbohydrate Research, 124(1), 135–139.Google Scholar
  72. 72.
    Oliveira, J. T., Martins, L., Picciochi, R., Malafaya, I. B., Sousa, R. A., Neves, N. M., et al. (2009). Gellan gum: A new biomaterial for cartilage tissue engineering applications. Journal of Biomedical Materials Research Part A, 93A(3), 852–863.Google Scholar
  73. 73.
    Smith, A. M., Shelton, R. M., Perrie, Y., & Harris, J. J. (2007). An initial evaluation of gellan gum as a material for tissue engineering applications. Journal of Biomaterials Applications, 22(3), 241–254.Google Scholar
  74. 74.
    Silva-Correia, J., Oliveira, J. M., Caridade, S. G., Oliveira, J. T., Sousa, R. A., Mano, J. F., et al. (2011). Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 5(6), E97–E107.Google Scholar
  75. 75.
    Oliveira, J. M., Silva, S. S., Malafaya, P. B., Rodrigues, M. T., Kotobuki, N., Hirose, M., et al. (2009). Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: Physicochemical characterization and assessment of rat bone marrow stromal cell viability. Journal of Biomedical Materials Research Part A, 91A(1), 175–186.Google Scholar
  76. 76.
    Oliveira, J. M., Sousa, R. A., Kotobuki, N., Tadokoro, M., Hirose, M., Mano, J. F., et al. (2009). The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials, 30(5), 804–813.Google Scholar
  77. 77.
    Landers, R., Pfister, A., Hubner, U., John, H., Schmelzeisen, R., & Mulhaupt, R. (2002). Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. Journal of Materials Science, 37(15), 3107–3116.Google Scholar
  78. 78.
    Leong, K. F., Cheah, C. M., & Chua, C. K. (2003). Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 24(13), 2363–2378.Google Scholar
  79. 79.
    Yeong, W. Y., Chua, C. K., Leong, K. F., & Chandrasekaran, M. (2004). Rapid prototyping in tissue engineering: Challenges and potential. Trends in Biotechnology, 22(12), 643–652.Google Scholar
  80. 80.
    Landers, R., & Mulhaupt, R. (2000). Desktop manufacturing of complex objects, prototypes and biomedical scaffolds by means of computer-assisted design combined with computer-guided 3D plotting of polymers and reactive oligomers. Macromolecular Materials and Engineering, 282(9), 17–21.Google Scholar
  81. 81.
    Landers, R., Hubner, U., Schmelzeisen, R., & Mulhaupt, R. (2002). Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials, 23(23), 4437–4447.Google Scholar
  82. 82.
    Son, J., & Kim, G. (2009). Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces. Journal of Biomaterials Science-Polymer Edition, 20(14), 2089–2101.Google Scholar
  83. 83.
    Babensee, J. E., McIntire, L. V., & Mikos, A. G. (2000). Growth factor delivery for tissue engineering. Pharmaceutical Research, 17(5), 497–504.Google Scholar
  84. 84.
    Lieberman, J. R., Daluiski, A., & Einhorn, T. A. (2002). The role of growth factors in the repair of bone—Biology and clinical applications. Journal of Bone and Joint Surgery-American, 84A(6), 1032–1044.Google Scholar
  85. 85.
    Schmidt, M. B., Chen, E. H., & Lynch, S. E. (2006). A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthritis and Cartilage, 14(5), 403–412.Google Scholar
  86. 86.
    Fortier, L. A., Mohammed, H. O., Lust, G., & Nixon, A. J. (2002). Insulin-like growth factor-I enhances cell-based repair of articular cartilage. Journal of Bone and Joint Surgery-British, 84B(2), 276–288.Google Scholar
  87. 87.
    Linkhart, T. A., Mohan, S., & Baylink, D. J. (1996). Growth factors for bone growth and repair: IGF, TGF beta and BMP. Bone, 19(1), S1–S12.Google Scholar
  88. 88.
    Fortier, L. A., Barker, J. U., Strauss, E. J., McCarrel, T. M., & Cole, B. J. (2011). The role of growth factors in cartilage repair. Clinical Orthopaedics and Related Research, 469(10), 2706–2715.Google Scholar
  89. 89.
    Vunjak-Novakovic, G., Meinel, L., Altman, G., & Kaplan, D. (2005). Bioreactor cultivation of osteochondral grafts. Orthodontics and Craniofacial Research, 8(3), 209–218.Google Scholar
  90. 90.
    Vunjak-Novakovic, G., Obradovic, B., Martin, I., Bursac, P. M., Langer, R., & Freed, L. E. (1998). Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnology Progress, 14(2), 193–202.Google Scholar
  91. 91.
    Schwarz, R. P., Goodwin, T. J., & Wolf, D. A. (1992). Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity. Journal of Tissue Culture Methods: Tissue Culture Association Manual of Cell, Tissue, and Organ Culture Procedures, 14(2), 51–57.Google Scholar
  92. 92.
    Bancroft, G. N., Sikavitsas, V. I., & Mikos, A. G. (2003). Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Engineering, 9(3), 549–554.Google Scholar
  93. 93.
    Pei, M., Solchaga, L. A., Seidel, J., Zeng, L., Vunjak-Novakovic, G., Caplan, A. I., et al. (2002). Bioreactors mediate the effectiveness of tissue engineering scaffolds. Faseb Journal, 16(10), 1691–1711.Google Scholar
  94. 94.
    Schaefer, D., Martin, I., Jundt, G., Seidel, J., Heberer, M., Grodzinsky, A., et al. (2002). Tissue-engineered composites for the repair of large osteochondral defects. Arthritis and Rheumatism, 46(9), 2524–2534.Google Scholar
  95. 95.
    Kandel, R. A., Grynpas, M., Pilliar, R., Lee, J., Wang, J., Waldman, S., et al. (2006). Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a Sheep model. Biomaterials, 27(22), 4120–4131.Google Scholar
  96. 96.
    Klein, T. J., Rizzi, S. C., Reichert, J. C., Georgi, N., Malda, J., Schuurman, W., et al. (2009). Strategies for zonal cartilage repair using hydrogels. Macromolecular Bioscience, 9(11), 1049–1058.Google Scholar
  97. 97.
    Kim, T. K., Sharma, B., Williams, C. G., Ruffner, M. A., Malik, A., McFarland, E. G., et al. (2003). Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthritis and Cartilage, 11(9), 653–664.Google Scholar
  98. 98.
    Ng, K. W., Wang, C. C. B., Mauck, R. L., Kelly, T. A. N., Chahine, N. O., Costa, K. D., et al. (2005). A layered agarose approach to fabricate depth-dependent inhomogeneity in chondrocyte-seeded constructs. Journal of Orthopaedic Research, 23(1), 134–141.Google Scholar
  99. 99.
    Ng, K. W., Ateshian, G. A., & Hung, C. T. (2009). Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Engineering Part A, 15(9), 2315–2324.Google Scholar
  100. 100.
    Harley, B. A., Lynn, A. K., Wissner-Gross, Z., Bonfield, W., Yannas, I. V., & Gibson, L. J. (2010). Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. Journal of Biomedical Materials Research Part A, 92A(3), 1078–1093.Google Scholar
  101. 101.
    Jiang, J., Tang, A., Ateshian, G. A., Guo, X. E., Hung, C. T., & Lu, H. H. (2010). Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Annals of Biomedical Engineering, 38(6), 2183–2196.Google Scholar
  102. 102.
    Lee, C. H., Cook, J. L., Mendelson, A., Moioli, E. K., Yao, H., & Mao, J. J. (2010). Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study. Lancet, 376(9739), 440–448.Google Scholar
  103. 103.
    Huang, X., Yang, D., Yan, W., Shi, Z., Feng, J., Gao, Y., et al. (2007). Osteochondral repair using the combination of fibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybrid materials. Biomaterials, 28(20), 3091–3100.Google Scholar
  104. 104.
    Yang, Z., Shi, Y., Wei, X., He, J., Yang, S., Dickson, G., et al. (2010). Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold. Tissue Engineering Part C-Methods, 16(5), 865–876.Google Scholar
  105. 105.
    Peel, S. A. F., Chen, H., Renlund, R., Badylak, S. F., & Kandel, R. A. (1998). Formation of a SIS-cartilage composite graft in vitro and its use in the repair of articular cartilage defects. Tissue Engineering, 4(2), 143–155.Google Scholar
  106. 106.
    Suckow, M. A., Voytik-Harbin, S. L., Terril, L. A., & Badylak, S. F. (1999). Enhanced bone regeneration using porcine small intestinal submucosa. Journal of Investigative Surgery, 12(5), 277–287.Google Scholar
  107. 107.
    Khetani, S. R., & Bhatia, S. N. (2008). Microscale culture of human liver cells for drug development. Nature Biotechnology, 26(1), 120–126.Google Scholar
  108. 108.
    Bhatia, S. N., Balis, U. J., Yarmush, M. L., & Toner, M. (1999). Effect of cell-cell interactions in preservation of cellular phenotype: Cocultivation of hepatocytes and nonparenchymal cells. Faseb Journal, 13(14), 1883–1900.Google Scholar
  109. 109.
    Flaim, C. J., Chien, S., & Bhatia, S. N. (2005). An extracellular matrix microarray for probing cellular differentiation. Nature Methods, 2(2), 119–125.Google Scholar
  110. 110.
    Allen, J. W., & Bhatia, S. N. (2003). Formation of steady-state oxygen gradients in vitro—application to liver zonation. Biotechnology and Bioengineering, 82(3), 253–262.Google Scholar
  111. 111.
    Moroni, L., Lambers, F. M., Wilson, W., van Donkelaar, C. C., de Wijn, J. R., Huiskesb, R., et al. (2007). Finite element analysis of meniscal anatomical 3D scaffolds: Implications for tissue engineering. The Open Biomedical Engineering Journal, 1, 23–34.Google Scholar
  112. 112.
    Ballyns, J. J., Gleghorn, J. P., Niebrzydowski, V., Rawlinson, J. J., Potter, H. G., Maher, S. A., et al. (2008). Image-guided tissue engineering of anatomically shaped implants via MRI and micro-CT using injection molding. Tissue Engineering Part A, 14(7), 1195–1202.Google Scholar
  113. 113.
    Schek, R. M., Taboas, J. M., Segvich, S. J., Hollister, S. J., & Krebsbach, P. H. (2004). Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Engineering, 10(9–10), 1376–1385.Google Scholar
  114. 114.
    Lima, E. G., Mauck, R. L., Han, S. H., Park, S., Ng, K. W., Ateshian, G. A., et al. (2004). Functional tissue engineering of chondral and osteochondral constructs. Biorheology, 41(3–4), 577–590.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Ibrahim Fatih Cengiz
    • 1
    • 2
    Email author
  • Joaquim Miguel Oliveira
    • 1
    • 2
  • Rui Luís Reis
    • 1
    • 2
  1. 1.3B’s Research Group–Biomaterials, Biodegradables and BiomimeticsUniversity of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineGuimarãesPortugal
  2. 2.ICVS/3B’s–PT Government Associate LaboratoryBraga/GuimarãesPortugal

Personalised recommendations