Cartilage Repair, Replacement, and Regenerative Strategies for Osteochondral Lesions of the Talus

  • Samuel B. AdamsEmail author
  • Selene G. Parekh
  • Diego H. Zanolli de Solminihac
  • Evgeny E. Krynetskiy
  • Lew C. Schon
  • Mark E. Easley


Osteochondral lesions of the talus present a formidable treatment challenge to the orthopaedic surgeon. Historical cartilage repair strategies often result in the formation of fibrocartilage leading to suboptimal clinical results. With advances in regenerative medicine, modern surgical techniques are diverse and employ autograft, allograft, and tissue-engineered constructs for cartilage repair. Fresh and particulated juvenile allograft transplantation have become popular options in the United States. Wordwide, both cellular and acellular tissue-engineered constructs are utilized. In all cases, there is still debate as to the optimal cell source and scaffold material and only short-term clinical results are available. This chapter will review these current as well as experimental techniques for cartilage repair of osteochondral lesions of the talus.


Osteochondral lesions of the talus Particulated juvenile allograft transplantation Fresh structural allograft transplantation Tissue-engineered Autologous chondrocyte implantation Matrix-induced autologous chondrocyte implantation Collagen scaffold Bone marrow aspirate concentrate Stem cells 


  1. 1.
    Kappis M. Weitere Beitrage zur traumatisch-mechanischen Entstehung der “spontanen” Knorpelablosungen (sogen. Osteohondrisit dessecans). Dtsch Z Chir. 1922;171:13–20.CrossRefGoogle Scholar
  2. 2.
    Cambell C, Ranawat C. Osteochondritis dissecans: the question of etiology. J Trauma. 1966;6:201–21.Google Scholar
  3. 3.
    Tol JL, Struijs PA, Bossuyt PM, Verhagen RA, van Dijk CN. Treatment strategies in osteochondral defects of the talar dome: a systematic review. Foot Ankle Int. 2000;21(2):119–26.PubMedGoogle Scholar
  4. 4.
    Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41-A:988–1020.PubMedGoogle Scholar
  5. 5.
    Alexander AH, Lichtman DM. Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans). Long-term follow-up. J Bone Joint Surg Am. 1980;62(4):646–52.PubMedGoogle Scholar
  6. 6.
    Van Buecken K, Barrack RL, Alexander AH, Ertl JP. Arthroscopic treatment of transchondral talar dome fractures. Am J Sports Med. 1989;17(3):350–5; discussion 5–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Takao M, Uchio Y, Naito K, Fukazawa I, Ochi M. Arthroscopic assessment for intra-articular disorders in residual ankle disability after sprain. Am J Sports Med. 2005;33(5):686–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Athanasiou KA, Niederauer GG, Schenck Jr RC. Biomechanical topography of human ankle cartilage. Ann Biomed Eng. 1995;23(5):697–704.PubMedCrossRefGoogle Scholar
  9. 9.
    Elias I, Zoga AC, Morrison WB, Besser MP, Schweitzer ME, Raikin SM. Osteochondral lesions of the talus: localization and morphologic data from 424 patients using a novel anatomical grid scheme. Foot Ankle Int. 2007;28(2):154–61.PubMedCrossRefGoogle Scholar
  10. 10.
    McGahan PJ, Pinney SJ. Current concept review: osteochondral lesions of the talus. Foot Ankle Int. 2010;31(1):90–101.PubMedCrossRefGoogle Scholar
  11. 11.
    Pritsch M, Horoshovski H, Farine I. Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg Am. 1986;68(6):862–5.PubMedGoogle Scholar
  12. 12.
    Ferkel RD, Zanotti RM, Komenda GA, Sgaglione NA, Cheng MS, Applegate GR, et al. Arthroscopic treatment of chronic osteochondral lesions of the talus: long-term results. Am J Sports Med. 2008;36(9):1750–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Anderson IF, Crichton KJ, Grattan-Smith T, Cooper RA, Brazier D. Osteochondral fractures of the dome of the talus. J Bone Joint Surg Am. 1989;71(8):1143–52.PubMedGoogle Scholar
  14. 14.
    Hepple S, Winson IG, Glew D. Osteochondral lesions of the talus: a revised classification. Foot Ankle Int. 1999;20(12):789–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee KB, Bai LB, Park JG, Yoon TR. A comparison of arthroscopic and MRI findings in staging of osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2008;16(11):1047–51.PubMedCrossRefGoogle Scholar
  16. 16.
    Dipaola JD, Nelson DW, Colville MR. Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy. 1991;7(1):101–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Mintz DN, Tashjian GS, Connell DA, Deland JT, O’Malley M, Potter HG. Osteochondral lesions of the talus: a new magnetic resonance grading system with arthroscopic correlation. Arthroscopy. 2003;19(4):353–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Al-Ali D, Graichen H, Faber S, Englmeier KH, Reiser M, Eckstein F. Quantitative cartilage imaging of the human hind foot: precision and inter-subject variability. J Orthop Res. 2002;20(2):249–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Ateshian GA, Soslowsky LJ, Mow VC. Quantitation of articular surface topography and cartilage thickness in knee joints using stereophotogrammetry. J Biomech. 1991;24(8):761–76.PubMedCrossRefGoogle Scholar
  20. 20.
    Huch K. Knee and ankle: human joints with different susceptibility to osteoarthritis reveal different cartilage cellularity and matrix synthesis in vitro. Arch Orthop Trauma Surg. 2001;121(6):301–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Kuettner KE, Cole AA. Cartilage degeneration in different human joints. Osteoarthritis Cartilage. 2005;13(2):93–103.PubMedCrossRefGoogle Scholar
  22. 22.
    Treppo S, Koepp H, Quan EC, Cole AA, Kuettner KE, Grodzinsky AJ. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J Orthop Res. 2000;18(5):739–48.PubMedCrossRefGoogle Scholar
  23. 23.
    Eger W, Schumacher BL, Mollenhauer J, Kuettner KE, Cole AA. Human knee and ankle cartilage explants: catabolic differences. J Orthop Res. 2002;20(3):526–34.PubMedCrossRefGoogle Scholar
  24. 24.
    Stauffer RN, Chao EY, Brewster RC. Force and motion analysis of the normal, diseased, and prosthetic ankle joint. Clin Orthop Relat Res. 1977;127:189–96.PubMedGoogle Scholar
  25. 25.
    Kempson GE. Age-related changes in the tensile properties of human articular cartilage: a comparative study between the femoral head of the hip joint and the talus of the ankle joint. Biochim Biophys Acta. 1991;1075(3):223–30.PubMedCrossRefGoogle Scholar
  26. 26.
    Bauer M, Jonsson K, Linden B. Osteochondritis dissecans of the ankle. A 20-year follow-up study. J Bone Joint Surg Br. 1987;69(1):93–6.PubMedGoogle Scholar
  27. 27.
    McCullough CJ, Venugopal V. Osteochondritis dissecans of the talus: the natural history. Clin Orthop Relat Res. 1979;144:264–8.PubMedGoogle Scholar
  28. 28.
    Pettine KA, Morrey BF. Osteochondral fractures of the talus. A long-term follow-up. J Bone Joint Surg Br. 1987;69(1):89–92.PubMedGoogle Scholar
  29. 29.
    Mei-Dan O, Carmont MR, Laver L, Mann G, Maffulli N, Nyska M. Platelet-rich plasma or hyaluronate in the management of osteochondral lesions of the talus. Am J Sports Med. 2012;40(3):534–41.PubMedCrossRefGoogle Scholar
  30. 30.
    Verhagen RA, Maas M, Dijkgraaf MG, Tol JL, Krips R, van Dijk CN. Prospective study on diagnostic strategies in osteochondral lesions of the talus. Is MRI superior to helical CT? J Bone Joint Surg Br. 2005;87(1):41–6.PubMedGoogle Scholar
  31. 31.
    Stroud CC, Marks RM. Imaging of osteochondral lesions of the talus. Foot Ankle Clin. 2000;5(1):119–33.PubMedGoogle Scholar
  32. 32.
    Leumann A, Valderrabano V, Plaass C, Rasch H, Studler U, Hintermann B, et al. A novel imaging method for osteochondral lesions of the talus–comparison of SPECT-CT with MRI. Am J Sports Med. 2011;39(5):1095–101.PubMedCrossRefGoogle Scholar
  33. 33.
    Meftah M, Katchis SD, Scharf SC, Mintz DN, Klein DA, Weiner LS. SPECT/CT in the management of osteochondral lesions of the talus. Foot Ankle Int. 2011;32(3):233–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res. 1999;365:149–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Kelberine F, Frank A. Arthroscopic treatment of osteochondral lesions of the talar dome: a retrospective study of 48 cases. Arthroscopy. 1999;15(1):77–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Robinson DE, Winson IG, Harries WJ, Kelly AJ. Arthroscopic treatment of osteochondral lesions of the talus. J Bone Joint Surg Br. 2003;85(7):989–93.PubMedCrossRefGoogle Scholar
  37. 37.
    Savva N, Jabur M, Davies M, Saxby T. Osteochondral lesions of the talus: results of repeat arthroscopic debridement. Foot Ankle Int. 2007;28(6):669–73.PubMedCrossRefGoogle Scholar
  38. 38.
    Schuman L, Struijs PA, van Dijk CN. Arthroscopic treatment for osteochondral defects of the talus. Results at follow-up at 2 to 11 years. J Bone Joint Surg Br. 2002;84(3):364–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Kumai T, Takakura Y, Higashiyama I, Tamai S. Arthroscopic drilling for the treatment of osteochondral lesions of the talus. J Bone Joint Surg Am. 1999;81(9):1229–35.PubMedGoogle Scholar
  40. 40.
    Choi WJ, Kim BS, Lee JW. Osteochondral lesion of the talus: could age be an indication for arthroscopic treatment? Am J Sports Med. 2012;40(2):419–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Becher C, Thermann H. Results of microfracture in the treatment of articular cartilage defects of the talus. Foot Ankle Int. 2005;26(8):583–9.PubMedGoogle Scholar
  42. 42.
    Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy. 2008;24(1):106–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Choi WJ, Park KK, Kim BS, Lee JW. Osteochondral lesion of the talus: is there a critical defect size for poor outcome? Am J Sports Med. 2009;37(10):1974–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Han SH, Lee JW, Lee DY, Kang ES. Radiographic changes and clinical results of osteochondral defects of the talus with and without subchondral cysts. Foot Ankle Int. 2006;27(12):1109–14.PubMedGoogle Scholar
  45. 45.
    Saxena A, Eakin C. Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med. 2007;35(10):1680–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Gobbi A, Francisco RA, Lubowitz JH, Allegra F, Canata G. Osteochondral lesions of the talus: randomized controlled trial comparing chondroplasty, microfracture, and osteochondral autograft transplantation. Arthroscopy. 2006;22(10):1085–92.PubMedCrossRefGoogle Scholar
  47. 47.
    Ferkel RD, Cheng J. Operative treatment of the foot and ankle. New York: Appleton-Croft; 1999.Google Scholar
  48. 48.
    van den Borne MP, Raijmakers NJ, Vanlauwe J, Victor J, de Jong SN, Bellemans J, et al. International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis Cartilage. 2007;15(12):1397–402.PubMedCrossRefGoogle Scholar
  49. 49.
    Ogilvie-Harris DJ, Sarrosa EA. Arthroscopic treatment after previous failed open surgery for osteochondritis dissecans of the talus. Arthroscopy. 1999;15(8):809–12.PubMedCrossRefGoogle Scholar
  50. 50.
    Mitchell ME, Giza E, Sullivan MR. Cartilage transplantation techniques for talar cartilage lesions. J Am Acad Orthop Surg. 2009;17(7):407–14.PubMedGoogle Scholar
  51. 51.
    Doral MN, Bilge O, Batmaz G, Donmez G, Turhan E, Demirel M, et al. Treatment of osteochondral lesions of the talus with microfracture technique and postoperative hyaluronan injection. Knee Surg Sports Traumatol Arthrosc. 2012;20:1398–403.PubMedCrossRefGoogle Scholar
  52. 52.
    Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92(10):1927–37.PubMedCrossRefGoogle Scholar
  53. 53.
    Geerling J, Zech S, Kendoff D, Citak M, O’Loughlin PF, Hufner T, et al. Initial outcomes of 3-dimensional imaging-based computer-assisted retrograde drilling of talar osteochondral lesions. Am J Sports Med. 2009;37(7):1351–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Kono M, Takao M, Naito K, Uchio Y, Ochi M. Retrograde drilling for osteochondral lesions of the talar dome. Am J Sports Med. 2006;34(9):1450–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Nam EK, Ferkel RD, Applegate GR. Autologous chondrocyte implantation of the ankle: a 2- to 5-year follow-up. Am J Sports Med. 2009;37(2):274–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Baums MH, Heidrich G, Schultz W, Steckel H, Kahl E, Klinger HM. The surgical technique of autologous chondrocyte transplantation of the talus with use of a periosteal graft. Surgical technique. J Bone Joint Surg Am. 2007;89(Suppl 2 Pt.2):170–82.PubMedGoogle Scholar
  57. 57.
    Cherubino P, Grassi FA, Bulgheroni P, Ronga M. Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report. J Orthop Surg (Hong Kong). 2003;11(1):10–5.Google Scholar
  58. 58.
    Baums MH, Heidrich G, Schultz W, Steckel H, Kahl E, Klinger HM. Autologous chondrocyte transplantation for treating cartilage defects of the talus. J Bone Joint Surg Am. 2006;88(2):303–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Whittaker JP, Smith G, Makwana N, Roberts S, Harrison PE, Laing P, et al. Early results of autologous chondrocyte implantation in the talus. J Bone Joint Surg Br. 2005;87(2):179–83.PubMedGoogle Scholar
  60. 60.
    Zengerink M, Szerb I, Hangody L, Dopirak RM, Ferkel RD, van Dijk CN. Current concepts: treatment of osteochondral ankle defects. Foot Ankle Clin. 2006;11(2):331–59, vi.PubMedCrossRefGoogle Scholar
  61. 61.
    Lee KT, Lee YK, Young KW, Park SY, Kim JS. Factors influencing result of autologous chondrocyte implantation in osteochondral lesion of the talus using second look arthroscopy. Scand J Med Sci Sports. 2012;22:510–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Giannini S, Buda R, Grigolo B, Vannini F, De Franceschi L, Facchini A. The detached osteochondral fragment as a source of cells for autologous chondrocyte implantation (ACI) in the ankle joint. Osteoarthritis Cartilage. 2005;13(7):601–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Candrian C, Miot S, Wolf F, Bonacina E, Dickinson S, Wirz D, et al. Are ankle chondrocytes from damaged fragments a suitable cell source for cartilage repair? Osteoarthritis Cartilage. 2010;18(8):1067–76.PubMedCrossRefGoogle Scholar
  64. 64.
    van Bergen CJ, de Leeuw PA, van Dijk CN. Treatment of osteochondral defects of the talus. Rev Chir Orthop Reparatrice Appar Mot. 2008;94(8 Suppl):398–408.PubMedCrossRefGoogle Scholar
  65. 65.
    Brittberg M, Peterson L, Sjogren-Jansson E, Tallheden T, Lindahl A. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am. 2003;85-A Suppl 3:109–15.PubMedGoogle Scholar
  66. 66.
    Schneider TE, Karaikudi S. Matrix-Induced Autologous Chondrocyte Implantation (MACI) grafting for osteochondral lesions of the talus. Foot Ankle Int. 2009;30(9):810–4.PubMedCrossRefGoogle Scholar
  67. 67.
    Giza E, Sullivan M, Ocel D, Lundeen G, Mitchell ME, Veris L, et al. Matrix-induced autologous chondrocyte implantation of talus articular defects. Foot Ankle Int. 2010;31(9):747–53.PubMedCrossRefGoogle Scholar
  68. 68.
    Apprich S, Trattnig S, Welsch GH, Noebauer-Huhmann IM, Sokolwski M, Hirschfeld C, et al. Assessment of articular cartilage repair tissue after matrix-associated autologous chondrocyte transplantation or the microfracture technique in the ankle joint using diffusion-weighted imaging at 3 Tesla. Osteoarthritis Cartilage. 2012;20:703–11.PubMedCrossRefGoogle Scholar
  69. 69.
    Niemeyer P, Salzmann G, Schmal H, Mayr H, Sudkamp NP. Autologous chondrocyte implantation for the treatment of chondral and osteochondral defects of the talus: a meta-analysis of available evidence. Knee Surg Sports Traumatol Arthrosc. 2012;20:1696–703.PubMedCrossRefGoogle Scholar
  70. 70.
    Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467(12):3307–20.PubMedCrossRefGoogle Scholar
  71. 71.
    Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C, et al. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury. 2010;41(11):1196–203.PubMedCrossRefGoogle Scholar
  72. 72.
    Wiewiorski M, Miska M, Nicolas G, Valderrabano V. Revision of failed osteochondral autologous transplantation procedure for chronic talus osteochondral lesion with iliac crest graft and autologous matrix-induced chondrogenesis: a case report. Foot Ankle Spec. 2012;5(2):115–20.PubMedCrossRefGoogle Scholar
  73. 73.
    Wiewiorski M, Leumann A, Buettner O, Pagenstert G, Horisberger M, Valderrabano V. Autologous matrix-induced chondrogenesis aided reconstruction of a large focal osteochondral lesion of the talus. Arch Orthop Trauma Surg. 2011;131(3):293–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Valderrabano V, Leumann A, Rasch H, Egelhof T, Hintermann B, Pagenstert G. Knee-to-ankle mosaicplasty for the treatment of osteochondral lesions of the ankle joint. Am J Sports Med. 2009;37 Suppl 1:105S–11.PubMedCrossRefGoogle Scholar
  75. 75.
    Gross AE, Agnidis Z, Hutchison CR. Osteochondral defects of the talus treated with fresh osteochondral allograft transplantation. Foot Ankle Int. 2001;22(5):385–91.PubMedGoogle Scholar
  76. 76.
    Scranton Jr PE, Frey CC, Feder KS. Outcome of osteochondral autograft transplantation for type-V cystic osteochondral lesions of the talus. J Bone Joint Surg Br. 2006;88(5):614–9.PubMedGoogle Scholar
  77. 77.
    Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience. J Bone Joint Surg Am. 2003;85-A Suppl 2:25–32.PubMedGoogle Scholar
  78. 78.
    Sammarco GJ, Makwana NK. Treatment of talar osteochondral lesions using local osteochondral graft. Foot Ankle Int. 2002;23(8):693–8.PubMedGoogle Scholar
  79. 79.
    Kreuz PC, Steinwachs M, Erggelet C, Lahm A, Henle P, Niemeyer P. Mosaicplasty with autogenous talar autograft for osteochondral lesions of the talus after failed primary arthroscopic management: a prospective study with a 4-year follow-up. Am J Sports Med. 2006;34(1):55–63.PubMedCrossRefGoogle Scholar
  80. 80.
    Koh JL, Wirsing K, Lautenschlager E, Zhang LO. The effect of graft height mismatch on contact pressure following osteochondral grafting: a biomechanical study. Am J Sports Med. 2004;32(2):317–20.PubMedCrossRefGoogle Scholar
  81. 81.
    Latt LD, Glisson RR, Montijo HE, Usuelli FG, Easley ME. Effect of graft height mismatch on contact pressures with osteochondral grafting of the talus. Am J Sports Med. 2011;39(12):2662–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Giannini S, Buda R, Grigolo B, Vannini F. Autologous chondrocyte transplantation in osteochondral lesions of the ankle joint. Foot Ankle Int. 2001;22(6):513–7.PubMedGoogle Scholar
  83. 83.
    Raikin SM. Stage VI: massive osteochondral defects of the talus. Foot Ankle Clin. 2004;9(4):737–44, vi.PubMedCrossRefGoogle Scholar
  84. 84.
    Raikin SM. Fresh osteochondral allografts for large-volume cystic osteochondral defects of the talus. J Bone Joint Surg Am. 2009;91(12):2818–26.PubMedCrossRefGoogle Scholar
  85. 85.
    Adams SBJ. Midterm results of osteochondral lesions of the talar shoulder treated with fresh osteochondral allograft transplantation. J Bone Joint Surg Am. 2011;93:648–54.PubMedCrossRefGoogle Scholar
  86. 86.
    El-Rashidy H, Villacis D, Omar I, Kelikian AS. Fresh osteochondral allograft for the treatment of cartilage defects of the talus: a retrospective review. J Bone Joint Surg Am. 2011;93(17):1634–40.PubMedCrossRefGoogle Scholar
  87. 87.
    Langer F, Gross AE. Immunogenicity of allograft articular cartilage. J Bone Joint Surg Am. 1974;56(2):297–304.PubMedGoogle Scholar
  88. 88.
    Phipatanakul WP, VandeVord PJ, Teitge RA, Wooley PH. Immune response in patients receiving fresh osteochondral allografts. Am J Orthop (Belle Mead NJ). 2004;33(7):345–8.Google Scholar
  89. 89.
    Langer F, Czitrom A, Pritzker KP, Gross AE. The immunogenicity of fresh and frozen allogeneic bone. J Bone Joint Surg Am. 1975;57(2):216–20.PubMedGoogle Scholar
  90. 90.
    Meehan R, McFarlin S, Bugbee W, Brage M. Fresh ankle osteochondral allograft transplantation for tibiotalar joint arthritis. Foot Ankle Int. 2005;26(10):793–802.PubMedGoogle Scholar
  91. 91.
    Convery FR, Akeson WH, Amiel D, Meyers MH, Monosov A. Long-term survival of chondrocytes in an osteochondral articular cartilage allograft. A case report. J Bone Joint Surg Am. 1996;78(7):1082–8.PubMedGoogle Scholar
  92. 92.
    McGoveran BM, Pritzker KP, Shasha N, Price J, Gross AE. Long-term chondrocyte viability in a fresh osteochondral allograft. J Knee Surg. 2002;15(2):97–100.PubMedGoogle Scholar
  93. 93.
    Enneking WF, Campanacci DA. Retrieved human allografts : a clinicopathological study. J Bone Joint Surg Am. 2001;83-A(7):971–86.PubMedGoogle Scholar
  94. 94.
    Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am. 1991;73(8):1123–42.PubMedGoogle Scholar
  95. 95.
    Williams SK, Amiel D, Ball ST, Allen RT, Wong VW, Chen AC, et al. Prolonged storage effects on the articular cartilage of fresh human osteochondral allografts. J Bone Joint Surg Am. 2003;85-A(11):2111–20.PubMedGoogle Scholar
  96. 96.
    Mroz TE, Joyce MJ, Steinmetz MP, Lieberman IH, Wang JC. Musculoskeletal allograft risks and recalls in the United States. J Am Acad Orthop Surg. 2008;16(10):559–65.PubMedGoogle Scholar
  97. 97.
    Bonnor KF, Daner W, Yao JQ. 2-Year postoperative evaluation of a patient with a symptomatic full-thickness patellar cartilage defect repaired with particulated juvenile cartilage tissue. J Knee Surg. 2010;23(2):109–14.CrossRefGoogle Scholar
  98. 98.
    Kruse DL, Ng A, Paden M, Stone PA. Arthroscopic De Novo NT(®) juvenile allograft cartilage implantation in the talus: a case presentation. J Foot Ankle Surg. 2012;51(2):218–21.PubMedCrossRefGoogle Scholar
  99. 99.
    van Bergen CJ, Reilingh ML, van Dijk CN. Tertiary osteochondral defect of the talus treated by a novel contoured metal implant. Knee Surg Sports Traumatol Arthrosc. 2011;19(6):999–1003.PubMedCrossRefGoogle Scholar
  100. 100.
    van Bergen CJ, Zengerink M, Blankevoort L, van Sterkenburg MN, van Oldenrijk J, van Dijk CN. Novel metallic implantation technique for osteochondral defects of the medial talar dome. A cadaver study. Acta Orthop. 2010;81(4):495–502.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Samuel B. Adams
    • 1
    Email author
  • Selene G. Parekh
    • 2
  • Diego H. Zanolli de Solminihac
    • 3
  • Evgeny E. Krynetskiy
    • 4
  • Lew C. Schon
    • 2
  • Mark E. Easley
    • 5
  1. 1.Department of Orthopaedic SurgeryDuke University Medical CenterDurhamUSA
  2. 2.Department of Orthopaedic SurgeryDuke University Medical Center, North Carolina Orthopaedic ClinicDurhamUSA
  3. 3.Department of Orthopaedic SurgeryClinica AlemanaSantiagoChile
  4. 4.Joint Implant Surgeons of Florida7331 College Parkway, Suite 300Fort MyersUSA
  5. 5.Department of Orthopaedic SurgeryDuke University School of MedicineDurhamUSA

Personalised recommendations