A Context-Aware Shopping Portal Based on Semantic Models

Abstract

This chapter illustrates how semantic models can be used as a backend data source for both exploration and adaptation purposes. For a fictitious shopping portal, we implemented a faceted navigation approach that provides means for exploring the portal’s content manually. In addition to that, we implemented an adaptation mechanism based on spreading activation that also exploits the semantic structure of the underlying data.

References

  1. Abowd, G. D., Atkeson, C. G., Hong, J., Long, S., Kooper, R., & Pinkerton, M. (1997). Cyberguide: a mobile context-aware tour guide. Wireless Networks, 3(5), 421–433. CrossRefGoogle Scholar
  2. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. CrossRefGoogle Scholar
  3. Adomavicius, G., & Tuzhilin, A. (2010). Context-aware recommender systems. In F. Ricci, L. Rokach, B. Shapira & P. B. Kantor (Eds.), Recommender systems handbook (pp. 217–253). Berlin: Springer. Google Scholar
  4. Adomavicius, G., Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Transactions on Information Systems, 23(1), 103–145. CrossRefGoogle Scholar
  5. Anand, S., & Mobasher, B. (2007). Contextual recommendation. In B. Berendt, A. Hotho, D. Mladenic & G. Semeraro (Eds.), From web to social web: discovering and deploying user and content profiles (pp. 142–160). Berlin: Springer. CrossRefGoogle Scholar
  6. Anderson, J. R. (1983). A spreading activation theory of memory. Journal of Verbal Learning and Verbal Behavior, 22, 261–295. CrossRefGoogle Scholar
  7. Balabanovic, M., & Shoham, Y. (1997). Combining content-based and collaborative recommendation. Communications of the ACM, 40, 66–72. CrossRefGoogle Scholar
  8. Baltrunas, L., & Ricci, F. (2013). Experimental evaluation of context-dependent collaborative filtering using item splitting. User Modeling and User-Adapted Interaction. doi:10.1007/s11257-012-9137-9. Google Scholar
  9. Berger, H., Dittenbach, M., & Merkl, D. (2004). An adaptive information retrieval system based on associative networks. In APCCM ’04: proceedings of the 1st Asian-Pacific conference on conceptual modeling (pp. 27–36). Darlinghurst: Australian Computer Society. Google Scholar
  10. Burke, R. (2002). Hybrid recommender systems: survey and experiments. User Modeling and User-Adapted Interaction, 12(4), 331–370. MATHCrossRefGoogle Scholar
  11. Burke, R. (2007). Hybrid web recommender systems. In P. Brusilovsky, A. Kobsa & W. Nejdl (Eds.), Lecture notes in computer science: Vol. 4321. The adaptive web. Methods and strategies of web personalization (pp. 377–408). Berlin: Springer. CrossRefGoogle Scholar
  12. Carmagnola, F., Cena, F., Console, L., Cortassa, O., Gena, C., Goy, A., et al. (2008). Tag-based user modeling for social multi-device adaptive guides. User Modeling and User-Adapted Interaction, 18(5), 497–538. CrossRefGoogle Scholar
  13. Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., & Sartin, M. (1999). Combining content-based and collaborative filters in an online newspaper. In Proceedings of ACM SIGIR workshop on recommender systems. New York: ACM. Google Scholar
  14. Cohen, P. R., & Kjeldsen, R. (1987). Information retrieval by constrained spreading activation in semantic networks. Information Processing & Management, 23(4), 255–268. CrossRefGoogle Scholar
  15. Collins, A. M., & Loftus, E. F. (1975). A spreading activation theory of semantic processing. Psychological Review, 82(6), 407–428. CrossRefGoogle Scholar
  16. Crestani, F. (1997). Application of spreading activation techniques in information retrieval. Artificial Intelligence Review, 11(6), 453–482. CrossRefGoogle Scholar
  17. Davidson, J., Liebald, B., Liu, J., Nandy, P., van Vleet, T., Gargi, U., et al. (2010). The YouTube video recommendation system. In RecSys ’10: proceedings of the 4th ACM conference on recommender systems (pp. 293–296). New York: ACM. CrossRefGoogle Scholar
  18. Freyne, J., Berkovsky, S., Daly, E. M., & Geyer, W. (2010). Social networking feeds: recommending items of interest. In RecSys ’10: proceedings of the 4th ACM conference on recommender systems (pp. 277–280). New York: ACM. CrossRefGoogle Scholar
  19. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns: abstraction and reuse in object-oriented designs. In ECOOP ’93: proceedings of the 7th European conference on object-oriented programming. Berlin: Springer. Google Scholar
  20. Gibbins, N., Harris, S., Dix, A., & Schraefel, M. C. (2003). Electronics and computer science: Vol. 8639. Applying mSpace interfaces to the semantic web. Southampton: University of Southampton. Google Scholar
  21. Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, 35(12), 61–70. CrossRefGoogle Scholar
  22. Han, E.-H., & Karypis, G. (2005). Feature-based recommendation system. In CIKM ’05: proceedings of the 14th ACM international conference on information and knowledge management (pp. 446–452). New York: ACM. ISBN: 1-59593-140-6. CrossRefGoogle Scholar
  23. Heim, P., Ziegler, J., & Lohmann, S. (2008). Gfacet: a browser for the web of data. In S. Auer, S. Dietzold, S. Lohmann & J. Ziegler (Eds.), IMC-SSW’08: proceedings of the international workshop on interacting with multimedia content in the social semantic web (pp. 49–58). Google Scholar
  24. Herlocker, J. L., & Konstan, J. A. (2001). Content-independent task-focused recommendation. IEEE Internet Computing, 5(6), 40–47. CrossRefGoogle Scholar
  25. Hildebrand, M., van Ossenbruggen, J. R., & Hardman, L. (2006). Gfacet: a browser for heterogeneous semantic web repositories. In ISWC ’06: proceedings of the 5th international semantic web conference (pp. 272–285). Berlin: Springer. CrossRefGoogle Scholar
  26. Hussein, T. (2010). Interfaces and interaction design for learning and simulation environments. In N. Baloian, W. Luther, D. Söffker & Y. Urano (Eds.), Context-aware recommendations. Berlin: Logos. Google Scholar
  27. Hussein, T., & Gaulke, W. (2010). Hybride, kontext-sensitive Generierung von Produktempfehlungen. i-com. Zeitschrift für interaktive und kooperative Medien, 9(2), 16–23. Google Scholar
  28. Hussein, T., & Münter, D. (2010). Automated generation of a faceted navigation interface using semantic models. In T. Hussein, J. Ziegler, S. Lukosch & A. Dix (Eds.), SEMAIS ’10: proceedings of the 1st workshop on semantic models for adaptive interactive systems. CrossRefGoogle Scholar
  29. Hussein, T., & Neuhaus, S. (2010). Explanation of spreading activation based recommendations. In T. Hussein, J. Ziegler, S. Lukosch & A. Dix (Eds.), SEMAIS ’10: proceedings of 1st workshop on semantic models for adaptive interactive systems. CrossRefGoogle Scholar
  30. Hussein, T., & Ziegler, J. (2008). Adapting web sites by spreading activation in ontologies. ReColl ’08: proceedings of the international workshop on recommendation and collaboration. New York: ACM. Google Scholar
  31. Hussein, T., & Ziegler, J. (2010). Situationsgerechtes recommending. Informatik Spektrum, 34(2), 143–152. CrossRefGoogle Scholar
  32. Hussein, T., Westheide, D., & Ziegler, J. (2007). Context-adaptation based on ontologies and spreading activation. In I. Brunkhorst, D. Krause & W. Sitou (Eds.), Proceedings of ABIS ’07: 15th workshop on adaptivity and user modeling in interactive systems. Google Scholar
  33. Hussein, T., Linder, T., Gaulke, W., & Ziegler, J. (2009). Context-aware recommendations on rails. CARS ’ 09: proceedings of the 1st workshop on context-aware in recommender systems. New York. Google Scholar
  34. Hussein, T., Linder, T., Gaulke, W., & Ziegler, J. (2010a). A framework and an architecture for context-aware group recommendations. In G. Kolfschoten, T. Herrmann & S. Lukosch (Eds.), Lecture notes in computer science: Vol. 6257. CRIWG ’10: proceedings of the 16th conference on collaboration and technology (pp. 121–128). Berlin: Springer. CrossRefGoogle Scholar
  35. Hussein, T., Gaulke, W., Linder, T., & Ziegler, J. (2010b). Improving collaboration by using context views. In CAICOLL ’10: proceedings of the 1st workshop on context-adaptive interaction for collaborative work. Google Scholar
  36. Hussein, T., Linder, T., Gaulke, W., & Ziegler, J. (2013). Hybreed: A software framework for developing context-aware hybrid recommender systems. User Modeling and User-Adapted Interaction. doi:10.1007/s11257-012-9134-z. Google Scholar
  37. Jin, X., Zhou, Y., & Mobasher, B. (2005). Task-oriented web user modeling for recommendation. In Lecture notes in computer science: Vol. 3538. UM ’05: proceedings of the 10th international conference on user modeling (pp. 109–118). Google Scholar
  38. Kaminskas, M., & Ricci, F. (2011). Location-adapted music recommendation using tags. In J. A. Konstan, J. L. Marzo, R. Conejo & N. Oliver (Eds.), UMAP ’11: proceedings of the 19th international conference on user modeling, adaptation, and personalization (pp. 183–194). CrossRefGoogle Scholar
  39. Kim, S., & Kwon, J. (2007). Effective context-aware recommendation on the semantic web. International Journal of Computer Science and Network Security, 7(8), 154–159. MathSciNetGoogle Scholar
  40. Li, L., Chu, W., Langford, J., & Schapire, R. E. (2010). A contextual-bandit approach to personalized news article recommendation. In WWW ’10: proceedings of the 19th international conference on world wide web. Google Scholar
  41. Linden, G., Smith, B., & York, J. (2003). Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Computing, 7(1), 76–80. CrossRefGoogle Scholar
  42. Loizou, A., & Dasmahapatra, S. (2006). Recommender systems for the semantic web. In ECAI 06: recommender systems workshop. Google Scholar
  43. Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., & Koper, R. (2010). Recommender systems in technology enhanced learning. In F. Ricci, L. Rokach, B. Shapira & P. B. Kantor (Eds.), Recommender systems handbook (pp. 387–415). Berlin: Springer. Google Scholar
  44. Middleton, S. E., Shadbolt, N. R., & de Roure, D. C. (2004). Ontological user profiling in recommender systems. ACM Transactions on Information Systems, 22(1), 54–88. CrossRefGoogle Scholar
  45. Mobasher, B., Jin, X., & Zhou, Y. (2004). Semantically enhanced collaborative filtering on the web. In B. Berendt, A. Hotho, D. Mladenic, M. van Someren Myra Spiliopoulou & G. Stumme (Eds.), Lecture notes in computer science: Vol. 3209. Web mining: from web to semantic web. Berlin: Springer. Google Scholar
  46. Mooney, R. J., & Roy, L. (2000). Content-based book recommending using learning for text categorization. In Proceedings of the 5th ACM conference on digital libraries (pp. 195–204). New York: ACM. ISBN: 1-58113-231-X. CrossRefGoogle Scholar
  47. Oren, E., Delbru, R., & Decker, S. (2006). Extended faceted navigation for RDF data. In ISWC ’06: proceedings of the 5th international semantic web conference (pp. 559–572). CrossRefGoogle Scholar
  48. Pazzani, M. J. (1999). A framework for collaborative, content-based and demographic filtering. Artificial Intelligence Review, 13(5–6), 393–408. CrossRefGoogle Scholar
  49. Pirolli, P., & Card, S. (1995). Information foraging in information access environments. In I. R. Katz, R. Mack, L. Marks, M. B. Rosson & J. Nielsen (Eds.), CHI ’95: proceedings of the 1995 SIGCHI conference on human factors in computing systems (pp. 51–58). Denver: ACM. CrossRefGoogle Scholar
  50. Plaisant, C., Shneiderman, B., Doan, K., & Bruns, T. (1999). Interface and data architecture for query preview in networked information systems. ACM Transactions on Information Systems, 17(3), 320–341. CrossRefGoogle Scholar
  51. Quan, D., Huynh, D., & Karger, D. R. (2003). Haystack: a platform for authoring end user semantic web applications. In ICSW ’06: proceedings of the 2nd international semantic web conference (pp. 738–753). Berlin: Springer. Google Scholar
  52. Ranganathan, S. R. (1962). Elements of library classification. Bombay: Asia Publishing House. Google Scholar
  53. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an open architecture for collaborative filtering of netnews. In CSCW ’94: proceedings of the 1994 ACM conference on computer supported cooperative work (pp. 175–186). New York: ACM. ISBN: 0-89791-689-1. CrossRefGoogle Scholar
  54. Ricci, F., Rokach, L., & Shapira, B. (2010). Introduction to recommender systems handbook. In F. Ricci, L. Rokach, B. Shapira & P. B. Kantor (Eds.), Recommender systems handbook (pp. 1–35). Berlin: Springer. Google Scholar
  55. Rich, E. (1979). User modeling via stereotypes. Cognitive Science, 3(4), 329–354. CrossRefGoogle Scholar
  56. Salton, G., & Buckley, C. (1988). On the use of spreading activation methods in automatic information retrieval. In Y. Chiaramella (Ed.), Proceedings of the 11th annual international ACM SIGIR conference on research and development in information retrieval (pp. 147–160). New York: ACM. Google Scholar
  57. Sarwar, B., Karypis, G., Konstan, J. A., & Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. In V. Y. Shen, N. Saito, M. R. Lyu & M. E. Zurko (Eds.), WWW ’11: proceedings of the 10th international conference on world wide web (pp. 285–295). Hong Kong: ACM. ISBN: 1-58113-348-0. CrossRefGoogle Scholar
  58. Sieg, A., Mobasher, B., & Burke, R. (2010). Improving the effectiveness of collaborative recommendation with ontology-based user profiles. In HetRec ’10: proceedings of the 1st international workshop on information heterogeneity and fusion in recommender systems (pp. 39–46). New York: ACM. CrossRefGoogle Scholar
  59. Stevens, S. S. (1946). On the theory of scales of measurement. Science, 193(2684), 677–680. CrossRefGoogle Scholar
  60. Yee, K.-P., Swearingen, K., Li, K., & Hearst, M. (2003). Faceted metadata for image search and browsing. In CHI ’03: proceedings of the 2003 SIGCHI conference on human factors in computing systems (pp. 401–408). New York: ACM. ISBN: 1-58113-630-7. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.University of Duisburg-EssenDuisburgGermany

Personalised recommendations