Advertisement

User Interaction Templates for the Design of Lifelogging Systems

Chapter
Part of the Human–Computer Interaction Series book series (HCIS)

Abstract

A variety of life-tracking devices are being created to give opportunity to track our daily lives accurately and automatically through the application of sensing technologies. Technology allows us to automatically and passively record life activities in previously unimaginable detail, in a process called lifelogging. Captured materials may include text, photos/video, audio, location, Bluetooth logs and information from many other sensing modalities, all captured automatically by wearable sensors. Experience suggests that it can be overwhelming and impractical to manually scan through the full contents of these lifelogs. A promising approach is to apply visualization to large-scale data-driven lifelogs as a means of abstracting and summarizing information. In this chapter, we outline various UI templates that support different visualization schemes.

Keywords

Social Network Service Wearable Sensor Energy Expenditure Measurement Radar Graph Wearable Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research was supported by the Norwegian Research Council (CRI number: 174867) and Science Foundation Ireland under Grant No. 07/CE/I1147.

References

  1. Aharony, N., Pan, W., Ip, C., Khayal, I., & Pentland, A. (2011). Social fMRI: investigating and shaping social mechanisms in the real world. Pervasive and Mobile Computing, 7(6), 643–659. CrossRefGoogle Scholar
  2. Albinali, F., Intille, S., Haskell, W., & Rosenberger, M. (2010). Using wearable activity type detection to improve physical activity energy expenditure estimation. In UbiComp ’10. Proceedings of the 12th ACM international conference on Ubiquitous computing (pp. 311–320). New York: ACM. CrossRefGoogle Scholar
  3. Bell, G., & Gemmell, J. (2009). Total recall. New York: Dutton. Google Scholar
  4. Berry, E., Kapur, N., Williams, L., Hodges, S., Watson, P., Smyth, G., et al. (2007). The use of a wearable camera, SenseCam, as a pictorial diary to improve autobiographical memory in a patient with limbic encephalitis: a preliminary report. Neuropsychological Rehabilitation, 17(4–5), 582–601. CrossRefGoogle Scholar
  5. Berry, E., Hampshire, A., Rowe, J., Hodges, S., Kapur, N., Watson, P., et al. (2009). The neural basis of effective memory therapy in a patient with limbic encephalitis. Journal of Neurology, Neurosurgery and Psychiatry, 80(11), 1202–1205. CrossRefGoogle Scholar
  6. Bharoucha, A., Anand, V., Forlizzi, J., Dew, M., Reynolds, C. S. S., & Wactlar, H. (2009). Intelligent assistive technology applications to dementia care: current capabilities, limitations, and future challenges. American Journal of Geriatric Psychiatry, 17(2), 88–104. CrossRefGoogle Scholar
  7. Boland, J., & Pereira, R. (2011). Wireless headset camera lens. Google Scholar
  8. Bruls, D. M., Huizing, C., & van Wijk, J. J. (2000). Squarified treemaps. In Data visualization ’00. Proceedings of the joint Eurographics and IEEE TCVG symposium on visualization (pp. 33–42). Berlin: Springer. Google Scholar
  9. Byrne, D., Doherty, A. R., Snoek, C. G., Jones, G. G., & Smeaton, A. F. (2008). Validating the detection of everyday concepts in visual lifelogs. In SAMT ’08. Proceedings of the 3rd international conference on semantic and digital media technologies: semantic multimedia (pp. 15–30). Berlin, Heidelberg: Springer. Google Scholar
  10. Clements, M., Serdyukov, P., de Vries, A. P., & Reinders, M. J. T. (2010). Using flickr geotags to predict user travel behaviour. In SIGIR ’10. Proceedings of the 33rd international ACM SIGIR conference on research and development in information retrieval (pp. 851–852). New York: ACM. Google Scholar
  11. Cole, P., LeMura, L., Klinger, T., Strohecker, K., & McConnell, T. (2004). Measuring energy expenditure in cardiac patients using the body media armband versus indirect calorimetry. A validation study. The Journal of Sports Medicine and Physical Fitness, 44(3), 262–271. Google Scholar
  12. Daskala, B., Askoxylakis, I., Brown, I., Dickman, P., Friedewald, M., Irion, K., et al. (2011). Risks and benefits of emerging life-logging applications (Final report). Iraklio, Greece: European Network and Information Security Agency (ENISA). Google Scholar
  13. Doherty, A. (2009). Providing effective memory retrieval cues through automatic structuring and augmentation of a lifelog of images. PhD diss., Dublin City University. Google Scholar
  14. Doherty, A. R., Ó Conaire, C., Blighe, M., Smeaton, A. F., & O’Connor, N. E. (2008). Combining image descriptors to effectively retrieve events from visual lifelogs. In MIR ’08. Proceedings of the 1st ACM international conference on multimedia information retrieval (pp. 10–17). New York: ACM. CrossRefGoogle Scholar
  15. Doherty, A., Pauly-Takacs, K., Gurrin, C., Moulin, C., & Smeaton, A. F. (2009). Three years of SenseCam images—observations on cued recall. In Invited speech at SenseCam 2009 symposium at the 39th annual meeting of the society for neuroscience. Google Scholar
  16. Doherty, A., Pauly-Takacs, K., Capriani, N., Gurrin, C., Moulin, C., O’Connor, N., & Smeaton, A. F. (2012). Experiences of aiding autobiographical memory using the SenseCam. Human-Computer Interaction, 27(1–2), 151–174. Google Scholar
  17. Elliott, D., Hopfgartner, F., Leelanupab, T., Moshfeghi, Y., & Jose, J. M. (2009). An architecture for life-long user modelling. In LLUM ’09 (pp. 9–16). Google Scholar
  18. Friedland, G., & Sommer, R. (2010). Cybercasing the joint: on the privacy implications of geotagging. In Usenix security conference. Google Scholar
  19. Gedik, B., & Liu, L. (2008). Protecting location privacy with personalized k-anonymity: Architecture and algorithms. IEEE Transactions on Mobile Computing, 7(1), 1–18. CrossRefGoogle Scholar
  20. Gemmell, J., Bell, G., & Lueder, R. (2006). MyLifeBits: a personal database for everything. Communications of the ACM, 49(1), 88–95. CrossRefGoogle Scholar
  21. Haner, L. (2002). Child monitoring system. Google Scholar
  22. Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., et al. (2006). SenseCam: a retrospective memory aid. In UbiComp ’06. Proceedings of the 8th international conference on ubiquitous computing (pp. 177–193). Berlin: Springer. Google Scholar
  23. Jung, H., Kim, T., Yang, Y., Carli, L., Carnesecchi, M., Rizzo, A., & Gurrin, C. (2013, to appear). Aesthetics in data visualization: case studies and design issues. In Huang, M. & Huang, W. (eds.), Innovative approaches of data visualization and visual analytics. Hershey: IGI Global. Google Scholar
  24. Kalnikaite, V., & Whittaker, S. (2012). Synergetic recollection: how to design lifelogging tools that help locate the right information. In Studies in computational intelligence: Vol. 396. Human-computer interaction: the agency perspective (pp. 329–348). Berlin: Springer. CrossRefGoogle Scholar
  25. Kennedy, L. S., & Naaman, M. (2008). Generating diverse and representative image search results for landmarks. In WWW (pp. 297–306). CrossRefGoogle Scholar
  26. Kratz, S., Rohs, M., Wolf, K., Müller, J., Wilhelm, M., Johansson, C., et al. (2011). Body, movement, gesture & tactility in interaction with mobile devices. In MobileHCI ’11. Proceedings of the 13th international conference on human computer interaction with mobile devices and services (pp. 757–759). New York: ACM. Google Scholar
  27. Li, N., Crane, M., Ruskin, H., & Gurrin, C. (2013). Multiscaled cross-correlation dynamics on SenseCam lifelogged data. In MMM ’13. Proceedings of the 19th international conference on multimedia modeling, Part I (pp. 490–501). Berlin: Springer. Google Scholar
  28. Messerman, A., Mustafić, T., Camtepe, S. A., & Albayrak, S. (2011). Continuous and non-intrusive identity verification in real-time environments based on free-text keystroke dynamics. In IEEE international joint conference on biometrics (IJCB 11): international conference on biometrics (ICB) and the biometrics theory, application and systems (BTAS). Google Scholar
  29. Michael, K., McNamee, A., & Michael, M. (2006). The emerging ethics of humancentric GPS tracking and monitoring. In ICMB ’06: Proceedings of the international conference on mobile business (p. 34). CrossRefGoogle Scholar
  30. Miyaki, T., & Rekimoto, J. (2008). Sensonomy: envisioning folksonomic urban sensing. In UbiComp 2008 workshop programs (pp. 187–190). Google Scholar
  31. Montoye, H. J., Washburn, R., Servais, S., Ertl, A., Webster, J. G., & Nagle, F. J. (1983). Estimation of energy expenditure by a portable accelerometer. Medicine and Science in Sports and Exercise, 15(5), 403–407. CrossRefGoogle Scholar
  32. Nadkarni, A., & Hofmann, S. G. (2012). Why do people use Facebook? Personality and Individual Differences, 52(3), 243–249. CrossRefGoogle Scholar
  33. O’Hara, K., Tuffield, M. M., & Shadbolt, N. (2008). Lifelogging: privacy and empowerment with memories for life. Identity in the Information Society, 1(1), 155–172. CrossRefGoogle Scholar
  34. Olmassakian, V. (1999). Child monitoring system. Google Scholar
  35. Olsson, M. I. (2012). Wearable display device. Google Scholar
  36. Pauly-Takacs, K., Moulin, C. J. A., & Estlin, E. J. (2011). SenseCam as a rehabilitation tool in a child with anterograde amnesia. Memory, 19(7), 705–712. CrossRefGoogle Scholar
  37. Piasek, P., Irving, K., & Smeaton, A. F. (2011). SenseCam intervention based on cognitive stimulation therapy framework for early-stage dementia. In PervasiveHealth (pp. 522–525). Google Scholar
  38. Pittiglio, L. (2000). Use of reminiscence therapy in patients with Alzheimer’s disease. Lippincott’s Case Management, 5(6), 216–220. CrossRefGoogle Scholar
  39. Qiu, Z., Gurrin, C., Doherty, A. R., & Smeaton, A. F. (2012). A real-time life experience logging tool. In MMM’12 (pp. 636–638). Google Scholar
  40. Rawassizadeh, R., Anjomshoaa, A., & Tomitsch, M. (2011). A framework for long-term archiving of pervasive device information. MoMM ’11. Proceedings of the 9th international conference on advances in mobile computing and multimedia (pp. 244–247). New York: ACM. Google Scholar
  41. Reddy, S., Burke, J., Estrin, D., Hansen, M. H., & Srivastava, M. B. (2007). A framework for data quality and feedback in participatory sensing. In SenSys’07: Proceedings of the 5th international conference on embedded networked sensor systems (pp. 417–418). CrossRefGoogle Scholar
  42. Rekimoto, J., Miyaki, T., & Ishizawa, T. (2007). LifeTag: a WiFi-based location life-logging device. In ACM symposium on user interface and software technology. Google Scholar
  43. Schofield, G., Bishop, C. M., MacLean, G., Brown, P., Baker, M., Katselidis, K. A., et al. (2007). Novel GPS tracking of sea turtles as a tool for conservation management. Journal of Experimental Marine Biology and Ecology, 347(1–2), 58–68. CrossRefGoogle Scholar
  44. Shneiderman, B. (1996). The eyes have it: a task by data type taxonomy for information visualizations. In VL ’96. Proceedings of the 1996 IEEE symposium on visual languages (p. 336). Washington: IEEE Comput. Soc.. CrossRefGoogle Scholar
  45. Sittig, A., & Zuckerberg, M. (2010). Managing information about relationships in a social network via a social timeline. Google Scholar
  46. Swartz, A. M., Strath, S. J., Bassett, D. R., Obrien, W. L., King, G. A., & Ainsworth, B. E. (2000). Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Medicine and Science in Sports and Exercise, 32, 450–456. CrossRefGoogle Scholar
  47. Tufte, E. (1983). The visual display of quantitative information. Cheshire: Graphics Press. Google Scholar
  48. VandenBos, G. (Ed.) (2006). APA dictionary of psychology (1st ed.). Washington: American Psychol. Assoc. Google Scholar
  49. Weimerskirch, H., Bonadonna, F., Bailleul, F., Mabille, G., Dell’Omo, G., & Lipp, H.-P. (2002). GPS tracking of foraging albatrosses. Science, 295(5558), 1259. CrossRefGoogle Scholar
  50. Weiner, S. (1998). The addiction of overeating: self-help groups as treatment models. Journal of Clinical Psychology, 54(2), 163–167. CrossRefGoogle Scholar
  51. Woods, B., Spector, A., Jones, C., Orrell, M., & Davies, S. (2009). Reminiscence therapy for dementia. In Cochrane Database of Systematic Reviews 2005. Google Scholar
  52. Zhou, M., & Gurrin, C. (2012). A survey on life logging data capture. In SenseCam ’12. Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.TU BerlinBerlinGermany
  2. 2.Dublin City UniversityDublinIreland

Personalised recommendations