Advertisement

The Dismembered Body

  • Guy N. RuttyEmail author
  • Sarah V. Hainsworth
Chapter
  • 1.1k Downloads

Abstract

This chapter presents a personal approach to the investigation of a dismembered body, exampled by the investigation of a dismembered limb from a homicide. It first presents an overview of the number of dismemberments encountered each year in England and Wales, the anatomical site at which the dismemberment is usually achieved, and common sites of disposal. It then presents an overview from a pathological viewpoint of an approach from scene to mortuary in considering the four standard questions of who the person was, where, when, and by what means they came by their death. By taking such an approach, it demonstrates how much information can be gained for the investigating police force by the examination of just a limb. The second part of the chapter then considers from an engineering viewpoint the instruments that may have been used to dismember the body and which methods can be used to identify the said instrument. Thus the chapter provides an overall approach to the investigation of a dismembered body.

Keywords

Dismemberment Scene Evidence Cleaning Tool mark Saw Knives Impact Scissor action Stereo microscopy Scanning electron microscopy Environmental scanning electron microscopy Micro-computed tomography 

References

  1. 1.
    Reichs KJ. Postmortem dismemberment: recovery, analysis and interpretation. In: Reichs KJ, editor. Forensic osteology – advances in the identification of human remains. Springfield: Charles C Thomas; 1998. p. 353–88.Google Scholar
  2. 2.
    Symes SA. Suitcase man: the investigation, forensic analysis and prosecution of a homicide with postmortem dismemberment. In: Proc 60th Ann Meeting of the American Academy of Forensic Sciences, 14. Washington, DC/Colorado Springs: American Academy of Forensic Sciences; 2008. p. 22.Google Scholar
  3. 3.
    Randall B. Blood and tissue spatter associated with chainsaw dismemberment. J Forensic Sci. 2009;54:1310–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Dogan KH, Demirci S, Deniz I, Erkol Z. Decapitation and dismemberment of the corpse: a matricide case. J Forensic Sci. 2010;55:542–5.PubMedCrossRefGoogle Scholar
  5. 5.
    Racette R, Tho Vo T, Sauvageau A. Suicidal decapitation using a tractor loader: case report and review of the literature. J Forensic Sci. 2007;52:192–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Byard RW, Gilbert JD. Characteristic features of deaths due to decapitation. Am J Forensic Med Pathol. 2004;25:129–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Tsokos M, Turk EE, Uchigasaki S, Puschel K. Pathologic features of suicidal complete decapitations. Forensic Sci Int. 2004;139:95–102.PubMedCrossRefGoogle Scholar
  8. 8.
    Morild I, Lilleng PK. Different mechanisms of decapitation: three classic and one unique case history. J Forensic Sci. 2012;57(6):1659–64.PubMedCrossRefGoogle Scholar
  9. 9.
    Brough AL, Rutty GN, Black S, Morgan B. Post-mortem computed tomography and 3D imaging: anthropological applications for juvenile remains. Forensic Sci Med Pathol. 2012;8(3):270–92.PubMedCrossRefGoogle Scholar
  10. 10.
    Rutty GN, Robinson C, Morgan B, Black S, Adams C, Webster P. Fimag: the United Kingdom disaster victim/forensic identification imaging system. J Forensic Sci. 2009;54(6):1438–42.PubMedCrossRefGoogle Scholar
  11. 11.
    Robinson C, Eisma R, Morgan B, Jeffery A, Graham EA, Black S, Rutty GN. Anthropological measurement of lower limb and foot bones using multi-detector computed tomography. J Forensic Sci. 2008;53(6):1289–95.PubMedGoogle Scholar
  12. 12.
    Fraser I, Meier-Augenstein W. Stable (2)H isotope analysis of modern-day human hair and nails can aid forensic human identification. Rapid Commun Mass Spectrom. 2007;21(20):3279–85.PubMedCrossRefGoogle Scholar
  13. 13.
    Westen AA, Gerretsen RR, Maat GJ. Femur, rib, and tooth sample collection for DNA analysis in disaster victim identification (DVI): a method to minimize contamination risk. Forensic Sci Med Pathol. 2008;4(1):15–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Zinka B, Kandlbinder R, Schupfner R, Haas G, Wolfbeis OS, Graw M. The activity ratio of 228Th to 228Ra in bone tissue of recently deceased humans: a new dating method in forensic examinations. Anthropol Anz. 2012;69(2):147–57.PubMedCrossRefGoogle Scholar
  15. 15.
    Schrag B, Uldin T, Mangin P, Froidevaux P. Dating human skeletal remains using a radiometric method: biogenic versus diagenetic 90Sr and 210Pb in vertebrae. Forensic Sci Int. 2012;220(1–3):271–8.PubMedCrossRefGoogle Scholar
  16. 16.
    van de Goot FRW. The chronological dating of injury. In: Rutty GN, editor. Essentials of autopsy practice new advances, trends and developments. London: Springer; 2008. p. 167–81.CrossRefGoogle Scholar
  17. 17.
    Schäfer AT, Kaufmann JD. What happens in freezing bodies? Experimental study of histological tissue change caused by freezing injuries. Forensic Sci Int. 1999;102(2–3):149–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Mairs S, Swift B, Rutty GN. Detergent: an alternative approach to traditional bone cleaning methods for forensic practice. Am J Forensic Med Pathol. 2004;25:276–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Symes SA. Morphology of saw marks in human bone: Introduction and examination of residual kerf contour. In: Reichs KJ, editor. Forensic osteology, advances in the identification of human remains. Springfield: Charles C Thomas; 1998. p. 389–409.Google Scholar
  20. 20.
    Saville PA, Hainsworth SV, Rutty GN. Cutting crime: the analysis of the “uniqueness” of saw marks on bone. Int J Legal Med. 2007;121:349–57.PubMedCrossRefGoogle Scholar
  21. 21.
    Burd DQ, Kirk PL. Tool marks, factors involved in their comparison and use as evidence. J Crim Law Criminol. 1942;32:679–86.Google Scholar
  22. 22.
    Petraco N. Color atlas of forensic toolmark identification. Boca Raton: CRC Press; 2011.Google Scholar
  23. 23.
    Jones LV. Locating and preserving evidence in criminal cases. Am Jur Trials. 1964;555:616.Google Scholar
  24. 24.
    Andahl RO. The examination of saw marks. J Forensic Sci Soc. 1978;18:31–46.PubMedCrossRefGoogle Scholar
  25. 25.
    Bonte W. Tool marks in bones and cartilage. J Forensic Sci. 1975;20:315–23.PubMedGoogle Scholar
  26. 26.
    Bailey JA, Wang Y, van de Goot FR, Gerretsen RRR. Statistical analysis of kerf mark measurements in bone. Forensic Sci Med Pathol. 2011;7:53–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Walker PL, Long JC. An experimental study of the morphological characteristics of tool marks. Am Antiq. 1997;42:605–16.CrossRefGoogle Scholar
  28. 28.
    Lewis JE. Identifying sword marks on bone: criteria for distinguishing between cut marks made by different classes of bladed weapons. J Archaeol Sci. 2008;35:2001–8.CrossRefGoogle Scholar
  29. 29.
    Shaw KP, Chung J-H, Chung FC, Tseng BY, Pan CH, Yang KT, Yang C-H. A method for studying knife tool marks on bone. J Forensic Sci. 2011;56:967–71.PubMedCrossRefGoogle Scholar
  30. 30.
    Humphrey JH, Hutchinson DL. Macroscopic characteristics of hacking trauma. J Forensic Sci. 2001;46:228–33.PubMedGoogle Scholar
  31. 31.
    Lynn KS, Fairgrieve SI. Microscopic indicators of axe and hatchet trauma in fleshed and defleshed mammalian long bones. J Forensic Sci. 2009;54:793–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Katterwe H, Goebel R, Grooss KD. The comparison scanning electron microscope within the field of forensic science. Scan Electron Microsc. 1982;(Pt 2):499–504.Google Scholar
  33. 33.
    Katterwe H. Modern approaches for the examination of toolmarks and other surface marks. Forensic Sci Rev. 1996;8:46–72.Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.East Midlands Forensic Pathology UnitUniversity of LeicesterLeicesterUK
  2. 2.Department of EngineeringUniversity of LeicesterLeicesterUK

Personalised recommendations