Power Electronics for Smart Distribution Grids

  • Danilo I. Brandão
  • Renata Carnieletto
  • Phuong H. Nguyen
  • Paulo F. Ribeiro
  • Marcelo G. Simões
  • Siddharth Suryanarayanan
Part of the Green Energy and Technology book series (GREEN)


The operation of future electricity grids will have a multi-disciplinary nature via the merging of energy and communication infrastructures, and the interaction of state-of-the-art technologies such as power electronics, computational intelligence, signal processing, or smart metering. This interoperability presents challenges to optimize system performance by improving synergy between actors, i.e., producers, consumers, and network operators. This chapter tackles a part of these challenges by focusing on the role of power electronics in smart grids. First, background information of emerging distribution systems, evolutionary changes, and enabling technologies is presented. Furthermore, a requirement of electronic-based interface systems with smart topologies and controls is explained. Finally, applications of smart interface systems are expounded via three examples: (1) smart inverters, (2) smart power router, and (3) virtual synchronous generator.


Reactive Power Smart Grid Local Load Battery Bank Current Control Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    United States Department of Energy (2003) “Grid 2030” A national vision for electricity’s second 100 years. US Department of Energy. Available Cited 24 Apr 2012
  2. 2.
    Lightner E (2008) Evolution and progress of smart grid development at the Department of Energy. FERC-NARUC Smart Grid Collaborative Workshop. Available Cited 24 Apr 2012
  3. 3.
    US Congress (2007) Energy independence and security act of 2007 (EISA07). 110th US CongressGoogle Scholar
  4. 4.
    National Science and Technology Council (NSTC) (2011) A policy framework for the 21st century grid: Enabling our secure energy future. Executive office of the President: National science and technology council. Available Cited July 2011
  5. 5.
    Strobel CD (2009) American recovery and reinvestment act of 2009 (ARRA09). J Corp Account Financ 20(5):83–85 (111th US Congress)Google Scholar
  6. 6.
    US Department of Energy (2011) Smart grid information clearinghouse. Available Cited July 2011
  7. 7.
    (2011) Summary for Policymakers, International Panel on Climate Change, 11th Session of Working Group III of the IPCC, Abu Dhabi, United Arab EmiratesGoogle Scholar
  8. 8.
    Locke G, Gallagher PD (2010) NIST framework and roadmap for Smart Grid interoperability standards, release 1.0. US Department of Commerce. Available Cited July 2011
  9. 9.
    IEEE Guide for Smart Grid interoperability of energy technology and information technology operation with the electric power system (EPS), and end-use applications and loads. Institute of Electrical and Electronics Engineers (IEEE) Standard 2030. Sept 2011Google Scholar
  10. 10.
    International Electrotechnical Commission (IEC) (2011) Core IEC Standards. Available Cited July 2011
  11. 11.
    Brown HE, Suryanarayanan S, Heydt GT (2010) Some characteristics of emerging distribution systems under the Smart Grid Initiative. Elsevier Elec J. doi: 10.1016/j.tej.2010.05.005 Google Scholar
  12. 12.
    Brown HE, Haughton DA, Heydt GT, Suryanarayanan S (2010) Some elements of design and operation of a smart distribution system. Transmission and distribution conference and exposition, 2010 IEEE PES. doi: 10.1109/TDC.2010.5484491
  13. 13.
    Armas JM, Suryanarayanan S (2009) A heuristic technique for scheduling a customer-driven residential distributed energy resource installation. Intelligent system applications to power systems, 2009. ISAP‘09. 15th international conference, pp 1–7. doi: 10.1109/ISAP.2009.5352954
  14. 14.
    Photovoltaics DG, Storage E (2009) IEEE application guide for IEEE Std 1547, IEEE Standard for interconnecting distributed resources with electric power systems. Institute of Electrical and Electronics Engineers (IEEE). doi: 10.1109/IEEESTD.2008.4816078
  15. 15.
    Inverters C (2005) Controllers and interconnection system equipment for use with distributed energy resources. UL 1741. Underwriters Laboratory (UL)Google Scholar
  16. 16.
    Deconinck G, Vanthournout K, Beitollahi et al (2008) A robust semantic overlay network for microgrid control applications. In: Lemos R et al (eds) A robust semantic overlay network for microgrid control applications. Springer, BerlinGoogle Scholar
  17. 17.
    La Poutre H, Kling WL, Cobben S (2009) Intelligent systems for green developments. ERCIM News 79:38–39Google Scholar
  18. 18.
    Suryanarayanan S, Mitra J, Biswas S (2010) A conceptual framework of hierarchically networked agent-based microgrid architecture. IEEE PES Trans Distrib Conf Exposition. doi: 10.1109/TDC.2010.5484332 Google Scholar
  19. 19.
    Carnieletto R, Brandão D, Suryanarayanan S et al (2011) A multifunctional single-phase voltage source inverter in perspective of the Smart Grid Initiative. IEEE Ind Apps Mag. doi: 10.1109/MIAS.2010.939651 Google Scholar
  20. 20.
    Malinowski M, Kazmierkowski MP, Trzynadlowski AM (2003) A comparative study of control techniques for PWM rectifiers in AC adjustable speed drives. IEEE Trans Power Electron. doi: 10.1109/TPEL.2003.818871 Google Scholar
  21. 21.
    Sukegawa T, Kamiyama K, Takahashi J et al (1992) A multiple PW GTO line-side converter for unity power factor and reduced harmonics. IEEE Trans Ind Apps 28(6):1302–1308. doi: 10.1109/28.175281 CrossRefGoogle Scholar
  22. 22.
    Lindgren MB (1995) Feedforward-time efficient control of a voltage source converter connected to the grid by lowpass filters. Power Electron Spec Conf. doi: 10.1109/PESC.1995.474942 Google Scholar
  23. 23.
    Liserre M, Blaabjerg F, Hansen S (2005) Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans Ind Apps. doi: 10.1109/TIA.2005.853373 Google Scholar
  24. 24.
    Mao J, Wu G, Wu A et al (2011) Modeling and decoupling control of grid-connected voltage source inverter for wind energy applications. Adv Mat Res. doi: 10.4028/ Google Scholar
  25. 25.
    Ko SH, Lee SR, Dehbonei H et al (2006) Application of voltage- and current-controlled voltage source inverters for distributed generation systems. IEEE Trans Energ Conv 21(3):782–792. doi: 10.1109/TEC.2006.877371 CrossRefGoogle Scholar
  26. 26.
    Carnieletto R, Ramos DB, Simões MG, et al (2009) Simulation and analysis of DQ frame and P + Resonant controls for voltage source inverter to distributed generation. Power Electron Conf 104–109. doi:  10.1109/COBEP.2009.5347677
  27. 27.
    Hassaine L, Olias E, Quintero J et al (2009) Digital power factor control and reactive power regulation for grid-connected photovoltaic inverter. Renewable Energy 34(1):315–321. doi: 10.1016/j.renene.2008.03.016 CrossRefGoogle Scholar
  28. 28.
    Kjaer SB, Pedersen JK, Blaabjerg F (2005) A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans Ind Apps. doi: 10.1109/TIA.2005.853371 Google Scholar
  29. 29.
    Duarte JL, van Zwam A, Wijnands C, et al (1999) Reference frames fit for controlling PWM rectifiers. IEEE Trans Ind Elec 46(3):628–630. doi:  10.1109/41.767071 Google Scholar
  30. 30.
    Akagi H, Kanazawa Y, Fujita K, et al (2007) Generalized theory of instantaneous reactive power and its application. Wiley, London, vol 103, pp 58–66, doi: 10.1002/eej.4391030409
  31. 31.
    Ohnishi T (1991) Three phase PWM converter/inverter by means of instantaneous active and reactive power control. Indus Electron Control Instrum. doi: 10.1109/IECON.1991.239183 Google Scholar
  32. 32.
    Ortjohann E, Lingemann M, Mohd A et al (2008) A general architecture for modular smart inverter. Indus Electron. doi: 10.1109/ISIE.2008.4676908 Google Scholar
  33. 33.
    Roshan A, Burgos B, Baisden BC, et al (2007) A D-Q frame controller for a full-bridge single phase inverter used in small distributed power generation systems. Applied Power Electronics Conference, APEC 2007–Twenty Second Annual IEEE. doi: 10.1109/APEX.2007.357582
  34. 34.
    Miranda UA, Aredes M, Rolim LGB (2005) A DQ synchronous reference frame current control for single-phase converters. IEEE Power Electron Spec Conf. doi: 10.1109/PESC.2005.1581809 Google Scholar
  35. 35.
    Math works Inc (2011) SimPowerSystems: model and simulate electrical power systems. Available: Cited July 2011
  36. 36.
    Nguyen PH, Kling WL, Ribeiro PF (2011) Smart power router: a flexible agent-based converter interface in active distribution networks. IEEE Trans Smrt Gr. doi: 10.1109/TSG.2011.2159405 Google Scholar
  37. 37.
    Telecom Italia SpA (2010) Java agent development framework. Available: Cited 24 Apr 2012
  38. 38.
    Ishchenko A, Kling WL, Myrzik J (2009) Control aspects and the design of a small-scale test virtual power plant. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. doi:  10.1109/PES.2009.5260225
  39. 39.
    Driesen J, Visscher K (2008) Virtual synchronous generators. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. doi:  10.1109/PES.2008.4596800
  40. 40.
    (2010) Virtual synchronous project. European Union. Available Cited July 2011
  41. 41.
    Xue XY, Chang L, Kjaer SB et al (2004) Topologies of single-phase inverters for small distributed power generators: an overview. IEEE Trans Power Electron. doi: 10.1109/TPEL.2004.833460 Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Danilo I. Brandão
    • 1
  • Renata Carnieletto
    • 1
  • Phuong H. Nguyen
    • 1
  • Paulo F. Ribeiro
    • 1
  • Marcelo G. Simões
    • 1
  • Siddharth Suryanarayanan
    • 1
  1. 1.MB EindhovenThe Netherlands

Personalised recommendations