Interaction Techniques for Users with Severe Motor-Impairment

  • Pradipta BiswasEmail author
  • Rohan Joshi
  • Subhagata Chattopadhyay
  • U. Rajendra Acharya
  • Teik-Cheng Lim
Part of the Human–Computer Interaction Series book series (HCIS)


This chapter presents brief overview of a few new technologies used in interfaces for people with different range of abilities. We discuss about scanning systems that enables one to use a computer or tablet using only one or two switches, eye tracking system that moves a pointer in a screen following eye gaze and finally EEG-based brain computer interfaces. The chapter discusses state of the art on each system, points to a new system by combining more than one modality and finally present existing problems and future vision regarding these technologies.


Amyotrophic Lateral Sclerosis Single Photon Emission Compute Tomography Motor Imagery Scanning System Interaction Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Birbaumer, N. (1997). Slow cortical potentials: Their origin, meaning, and clinical use. In Brain and behavior: Past, present and future (pp. 25–39). Tilburg: Tilburg University Press.Google Scholar
  2. 2.
    Biswas, P., & Robinson, P. (2012). The cluster scanning system. Universal Access in the Information Society (UAIS), 12(3). Special issue on designing inclusive interaction.Google Scholar
  3. 3.
    Biswas, P., & Langdon, P. M. (2011). A new input system for disabled users involving eye gaze tracker and scanning interface. Journal of Assistive Technologies, 5(2), 58–66. ISSN: 1754-9450.Google Scholar
  4. 4.
    Dowsett, D. J., Stocker, J. T., & Askinor, F. B. (Eds.). (1998). The physics of diagnostic imaging (1st ed.). London: Chapman and Hall Medical. ISBN 0412401703.Google Scholar
  5. 5.
    Duchowski, A. T. (2007). Eye tracking methodology. London: Springer.Google Scholar
  6. 6.
    Elshout, J., & Molina, G. G. (2009). Review of brain-computer interfaces based on the P300 evoked potential. Philips Research Europe.Google Scholar
  7. 7.
    Evreinov, G., & Raisamo, R. (2004). Optimizing menu selection process for single-switch manipulation. In Proceedings of the ICCHP 2004, LNCS 3118 (pp. 836–844).Google Scholar
  8. 8.
    FaisalLab Eye Tracker. (2013). Tobii Eye Tracker. Accessed 3 Jan 2013.
  9. 9.
    Felton, E. A., Wilson, J. A., Williams, J. C., & Garell, P. C. (2007). Electrocorticographically controlled brain–computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Journal of Neurosurgery, 106(3), 495–500.CrossRefGoogle Scholar
  10. 10.
    Fejtova, M., et al. (2009). Hands-free interaction with a computer and other technologies. Universal Access in the Information Society, 8, 277–295.CrossRefGoogle Scholar
  11. 11.
    Gus Scanning Cursor. (2007). Gus Scanning Cursor. Accessed 21 May 2007.
  12. 12.
    Lesher, G., et al. (2002). Acquisition of scanning skills: The use of an adaptive scanning delay algorithm across four scanning displays. In Proceedings of the annual conference of RESNA. Google Scholar
  13. 13.
    Mellinger, J., Schalk, G., Braun, C., Preissl, H., Rosenstiel, W., Birbaumer, N., et al. (2007). An MEG-based Brain-Computer Interface (BCI). NeuroImage, 36(3), 581–593.CrossRefGoogle Scholar
  14. 14.
    Moynahan, A. J., & Mahoney, R. M. (1996). Single switch mouse control interface. In Proceedings of the annual conference of RESNA.Google Scholar
  15. 15.
    Ntoa, S., Savidis A., & Stephanidis, C. (2004). FastScanner: An accessibility tool for motor impaired users. In Proceedings of the ICCHP 2004, LNCS 3118 (pp. 796–803).Google Scholar
  16. 16.
    O’Neill, P., Roast, C., & Hawley, M. (2002). Evaluation of scanning user interfaces using real time data usage logs. In Proceedings of the international ACM SIGACCESS conference on computers and accessibility (ASSET 2002) (pp. 137–141)Google Scholar
  17. 17.
    Pfurtscheller, G., Neuper, C., Guger, C., Harkam, W., Ramoser, H., Schlögl, A., et al. (2000). Current trends in Graz Brain–Computer Interface (BCI) research. IEEE Transactions on Rehabilitation Engineering, 8(2), 216–219.CrossRefGoogle Scholar
  18. 18.
    Ross, T. J. (1997). Fuzzy logic with engineering application (International Edition,). New York: McGraw-Hill Inc.Google Scholar
  19. 19.
    Shein, F. (1997). Towards task transparency in alternative computer access: Selection of text through switch-based scanning. Ph.D. thesis, Department of Mechanical and Industrial Engineering, University of Toronto.Google Scholar
  20. 20.
    Simpson, R. C., & Koester, H. H. (1999, December). Adaptive one-switch row-column scanning. IEEE Transactions on Rehabilitation Engineering, 7(4), 464–473.CrossRefGoogle Scholar
  21. 21.
    Steriadis, C. E., & Constantnou, P. (2002). Using the scanning technique to make an ordinary operating system accessible to motor-impaired users. The Autonomia system. In Proceedings of the international ACM SIGACCESS conference on computers and accessibility (ASSET 2002). Google Scholar
  22. 22.
    Teplan, M. (2002). Fundamentals of EEG measurement. Measurement Science Review, 2(2), 1–11.Google Scholar
  23. 23.
    The ScanBuddy System. (2007). The scanbuddy system. Accessed 21 May 2007.
  24. 24.
    Tobii Eye Tracker. (2012). Tobii eye tracker website. Accessed 12 Dec 2012.
  25. 25.
    Van Gerven, M., Farquhar, J., Schaefer, R., Vlek, R., Geuze, J., Nijholt, A., et al. (2009). The brain–computer interface cycle. Journal of Neural Engineering, 6(4). doi: 10.1088/1741-2560/6/4/041001.
  26. 26.
    Ward, D. (2010). Dasher with an eye-tracker. Accessed 19 Aug 2010.
  27. 27.
    Wolpaw, J. R., & McFarland, D. J. (1994). Multichannel EEG based brain-computer communication. Electroencephalography and Clinical Neurophysiology, 78, 252–259.CrossRefGoogle Scholar
  28. 28.
    Wolpaw, J. R., & Birbaumer, N. (2006). Brain–computer interfaces for communication and control. Clinical neurophysiology. In M. E. Selzer, S. Clarke, L. G. Cohen, P. Duncan, & F. H. Gage (Eds.), Textbook of neural repair and rehabilitation; neural repair and plasticity (pp. 602–614). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. 29.
    Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113, 767–791.CrossRefGoogle Scholar
  30. 30.
    Wolpaw, J. R., McFarland, D. J., Neat, G. W., & Forneris, C. A. (1991). An EEG-based brain-computer interface for cursor control. Electroencephalography and Clinical Neurophysiology, 78, 252–259.CrossRefGoogle Scholar
  31. 31.
    Woodworth, R. S. (1899). The accuracy of voluntary movement. Psychological Review, 3, 1–119.Google Scholar
  32. 32.
    Wubbels, P., Nishimura, E., Rapoport, E., Darling, B., Proffitt, D., Downs, T., & Downs, J. H. (2007, July 22–27). Exploring calibration techniques for Function Near-Infrared Imaging (fNIR) controlled brain- computer interfaces. In Proceedings of the 3rd international conference on foundation of augmented cognition (pp. 23–29).Google Scholar
  33. 33.
    Zhai, S., Morimoto, C., & Ihde, S. (1999). Manual and Gaze Input Cascaded (MAGIC) pointing. In ACM SIGCHI conference on human factors in computing system (CHI).Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Pradipta Biswas
    • 1
    Email author
  • Rohan Joshi
    • 2
  • Subhagata Chattopadhyay
    • 3
  • U. Rajendra Acharya
    • 4
  • Teik-Cheng Lim
    • 5
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.KU LeuvenLeuvenBelgium
  3. 3.Camellia Institute of EngineeringKolkataIndia
  4. 4.Ngee Ann PolytechnicSingaporeSingapore
  5. 5.SIM UniversitySingaporeSingapore

Personalised recommendations