A ℤ3-Orbifold Theory of Lattice Vertex Operator Algebra and ℤ3-Orbifold Constructions

  • Masahiko Miyamoto
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 40)

Abstract

For an even positive definite lattice L and its automorphism σ of order 3, we prove that a fixed point subVOA \(V_{L}^{\sigma}\) of a lattice VOA VL is C2-cofinite. Using this result and the results in arXiv:0909.3665, we present ℤ3-orbifold constructions of holomorphic VOAs from lattice VOAs VΛ, where Λ are even unimodular positive definite lattices. One of them has the same character with the moonshine VOA V and another is a new VOA corresponding to No. 32 in Schellekens’ list (Theor. Mat. Fiz. 95(2), 348–360, 1993).

References

  1. 1.
    Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Buhl, G.: A spanning set for VOA modules. J. Algebra 254(1), 125–151 (2002) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Conway, J.H., Norton, S.P.: Monstrous moonshine. Bull. Lond. Math. Soc. 11, 308–339 (1979) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Conway, J.H., Sloane, N.J.A.: Sphere Packing, Lattices and Groups. Springer, New York (1988) Google Scholar
  5. 5.
    Dong, C.: Vertex algebras associated with even lattices. J. Algebra 160, 245–265 (1993) CrossRefGoogle Scholar
  6. 6.
    Dong, C., Li, H., Mason, G.: Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Commun. Math. Phys. 214(1), 1–56 (2000) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster. Pure and Applied Math., vol. 134. Academic Press, New York (1988) MATHGoogle Scholar
  8. 8.
    Gaberdiel, M., Neitzke, A.: Rationality, quasirationality, and finite W-algebra. DAMTP-200-111 Google Scholar
  9. 9.
    Huang, Y.-Z.: Differential equations and intertwining operators. Commun. Contemp. Math. 7(3), 375–400 (2005) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Huang, Y.-Z.: Vertex operator algebras and the Verlinde conjecture. Commun. Contemp. Math. 10(1), 103–154 (2008) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Miyamoto, M.: Modular invariance of vertex operator algebras satisfying C 2-cofiniteness. Duke Math. J. 122(1), 51–91 (2004) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Miyamoto, M.: Flatness of tensor products and semi-rigidity for C 2-cofinite vertex operator algebras II. arXiv:0909.3665
  13. 13.
    Miyamoto, M.: A ℤ3-orbifold theory of lattice vertex operator algebra and ℤ3-orbifold constructions. arXiv:1003.0237
  14. 14.
    Miyamoto, M.: C 1-cofinite condition and fusion products of vertex operator algebras. In: Proceeding of the conference “Conformal field theories and tensor categories” in 2011. Beijing International Center for Mathematical Research, Preprint. Google Scholar
  15. 15.
    Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177–254 (1989) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Schellekens, A.N.: On the classification of meromorphic c=24 conformal field theories. Theor. Mat. Fiz. 95(2), 348–360 (1993). arXiv:hep-th/9205072v (1992) MathSciNetGoogle Scholar
  17. 17.
    Tanabe, K., Yamada, H.: Representations of a fixed-point subalgebra of a class of lattice vertex operator algebras by an automorphism of order three. Eur. J. Comb. 30(3), 725–735 (2009) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys. B 300, 360–376 (1988) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Yamskulna, G.: C 2-cofiniteness of the vertex operator algebra \(V^{+}_{L}\) when L is a rank one lattice. Commun. Algebra 32(3), 927–954 (2004) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Yamskulna, G.: Rationality of the vertex algebra \(V^{+}_{L}\) when L is a non-degenerate even lattice of arbitrary rank. J. Algebra 321(3), 1005–1015 (2009) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996) MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Masahiko Miyamoto
    • 1
  1. 1.Institute of MathematicsUniversity of TsukubaTsukubaJapan

Personalised recommendations