Game Analytics pp 585-619 | Cite as

An Introduction to Physiological Player Metrics for Evaluating Games

  • Lennart E. NackeEmail author


Evaluating affective user experience in games is an important component of the growing field of game user research, because compelling gameplay experiences incorporate meaningful and, therefore, emotional player decisions. This makes evaluating player emotions and player visceral physiological reactions a fascinating field of study for game researchers. With their recent success in the human factors domain, physiological metrics, which complement game metrics, have been successfully used to study player engagement and emotion in research and industry. This chapter provides a brief introduction to and primer of physiological measures currently used in game research and discusses the benefits and challenges of this quantitative method of game user research.


Death Event Skin Conductance Level Body Response Player Experience Psychophysiological Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thanks to Pejman Mirza-Babaei for his initial feedback and Anders Drachen for his encouragement and feedback on this chapter. This research was supported by the Network of Centres of Excellence (NCE), Graphics, Animation and New Media (GRAND), NSERC, and SSHRC IMMERSe (895-2011-1014).

Additional Reading for Psychophysiology

  1. 1. Andreassi, J. L. (2000). Human behavior and physiological response. Psychophysiology 4, 1–12.Google Scholar
  2. 2. Hazlett, R. L., & Benedek, J. (2007). Measuring emotional valence to understand the user’s experience of software. International Journal of Human-Computer Studies 65(4), 306–314. doi: 10.1016/j.ijhcs.2006.11.005
  3. 3. Baumgartner, T., Valko, L., Esslen, M., & Jäncke, L. (2006). Neural correlate of spatial presence in an arousing and noninteractive virtual reality: An EEG and psychophysiology study. CyberPsychology & Behavior 9(1), 30–45. doi: 10.1089/cpb.2006.9.30
  4. 4. Hudlicka, E. (2003). To feel or not to feel: The role of affect in human–computer interaction. International Journal of Human-Computer Studies 59(1–2), 1–32. doi: 10.1016/s1071-5819(03)00047-8
  5. 5. Hoffman, J. E. (1998). Visual attention and eye movements. In H.E. Pashler (Ed.) Attention. New York: Psychology Press (Taylor & Francis).Google Scholar
  6. 6. Fried, R. (1982). On-line analysis of the GSR. Integrative Physiological and Behavioral Science 17(2), 89–94. doi: 10.1007/bf03002004


  1. Andreassi, J. L. (2006). Psychophysiology: Human behavior and physiological response. London: Routledge.Google Scholar
  2. Barrett, L. F. (2006). Are emotions natural kinds? Perspectives on Psychological Science, 1(1), 28–58. doi: 10.1111/j.1745-6916.2006.00003.x.CrossRefGoogle Scholar
  3. Barrett, L. F., Mesquita, B., Ochsner, K. N., & Gross, J. J. (2007). The experience of emotion. Annual Review of Psychology, 58(1), 373–403. doi: 10.1146/annurev.psych.58.110405.085709.CrossRefGoogle Scholar
  4. Boucsein, W. (1992). Electrodermal activity. New York: Plenum Press.CrossRefGoogle Scholar
  5. Bradley, M. M., & Lang, P. J. (2007). Emotion and motivation. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (3rd ed., pp. 581–607). New York: Cambridge University Press.CrossRefGoogle Scholar
  6. Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: Defensive and appetitive reactions in picture processing. Emotion, 1(3), 276–298.CrossRefGoogle Scholar
  7. Brathwaite, B., & Schreiber, I. (2008). Challenges for game designers. Boston: Charles River Media.Google Scholar
  8. Brave, S., & Nass, C. (2002). Emotion in human-computer interaction. In J. A. Jacko & A. Sears (Eds.), The human-computer interaction handbook: Fundamentals, evolving technologies and emerging applications (pp. 81–96). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  9. Cacioppo, J. T., Gardner, W. L., & Berntson, G. G. (1999). The affect system has parallel and integrative processing components: Form follows function. Journal of Personality and Social Psychology, 76(5), 839–855. doi: 10.1037/0022-3514.76.5.839.CrossRefGoogle Scholar
  10. Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.). (2007). Handbook of Psychophysiology. Cambridge, UK: Cambridge University Press.Google Scholar
  11. Calvo, R. A., & D’Mello, S. (2010). Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Transactions on Affective Computing, 1(1), 18–37. doi: 10.1109/t-affc.2010.1.CrossRefGoogle Scholar
  12. Cannon, W. B. (1927). The James-Lange theory of emotions: A critical examination and an alternative theory. The American Journal of Psychology, 39(1/4), 106–124. doi: 10.2307/1415404.CrossRefGoogle Scholar
  13. Chatrian, G. E., Lettich, E., & Nelson, P. L. (1988). Modified nomenclature for the “10%” electrode system. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 5(2), 183–186.CrossRefGoogle Scholar
  14. Dalgleish, T., Power, M. J., & Power, M. (2000). Handbook of cognition and emotion. Chichester/New York: Wiley.Google Scholar
  15. Dalgleish, T., Dunn, B. D., & Mobbs, D. (2009). Affective neuroscience: Past, present, and future. Emotion Review, 1(4), 355–368. doi: 10.1177/1754073909338307.CrossRefGoogle Scholar
  16. Damasio, A. R. (1994). Descartes’ error. New York: G.P. Putnam.Google Scholar
  17. Darrow, C. W. (1964). Psychophysiology, yesterday, today, and tomorrow. Psychophysiology, 1(1), 4–7. doi: 10.1111/j.1469-8986.1964.tb02615.x.CrossRefGoogle Scholar
  18. Davidson, R. J., Scherer, K. R., & Goldsmith, H. H. (2003). Handbook of affective sciences. Oxford: Oxford University Press.Google Scholar
  19. Döveling, K., Von Scheve, C., & Konijn, E. A. (2010). The Routledge handbook of emotions and mass media. London: Routledge.Google Scholar
  20. Duchowski, A. T. (2007). Eye tracking methodology: Theory and practice (2nd ed.). New York: Springer.Google Scholar
  21. Ekman, P. (1972). Universals and cultural differences in facial expressions of emotion. In J. Cole (Ed.), Nebraska symposium on motivation, 1971 (pp. 207–283). Lincoln: University of Nebraska Press.Google Scholar
  22. Ekman, P. (1992a). Are there basic emotions? Psychological Review, 99(3), 550–553.CrossRefGoogle Scholar
  23. Ekman, P. (1992b). An argument for basic emotions. Cognition and Emotion, 6(3/4), 169–200. doi: 10.1080/02699939208411068.Google Scholar
  24. Ekman, P., & Davidson, R. J. (1994). The nature of emotion: Fundamental questions. New York: Oxford University Press.Google Scholar
  25. Engl, S., & Nacke, L. E. (2013, February). Contextual influences on mobile player experience – A game user experience model. Entertainment Computing 4(1), 83–91, ISSN 1875-9521. doi: 10.1016/j.entcom.2012.06.001. Google Scholar
  26. Fairclough, S. H. (2011a). Biometrics and evaluation of gaming experience part two: A thought experiment. Last accessed 19 Mar 2013.
  27. Fairclough, S. H. (2011b). Biometrics, game evaluation, and user XP: Approach with caution. Last accessed 19 Mar 2013.
  28. Fridlund, A. J., & Cacioppo, J. T. (1986). Guidelines for human electromyographic research. Psychophysiology, 23(5), 567–589. doi: 10.1111/j.1469-8986.1986.tb00676.x.CrossRefGoogle Scholar
  29. Frijda, N. H. (1986). The emotions. Cambridge, UK: Cambridge University Press.Google Scholar
  30. Gokcay, D., & Yildirim, G. (2010). Affective computing and interaction: Psychological, cognitive, and neuroscientific perspectives. Hershey: IGI Global.CrossRefGoogle Scholar
  31. Gualeni, S., Janssen, D., & Calvi, L. (2012). How psychophysiology can aid the design process of casual games: A tale of stress, facial muscles, and paper beasts. In Proceedings of the international conference on the Foundations of Digital Games (FDG ’12) (pp. 149–155). Raleigh: ACM. doi: 10.1145/2282338.2282369.
  32. Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (pp. 239–250). Amsterdam: North Holland Press.Google Scholar
  33. Hazlett, R. L. (2006). Measuring emotional valence during interactive experiences: Boys at video game play. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (CHI ’06) (pp. 1023–1026). Montréal: ACM. doi:10.1145/1124772.1124925.Google Scholar
  34. Hazlett, R. L. (2008). Using biometric measurement to help develop emotionally compelling games. In K. Isbister & N. Schaffer (Eds.), Game usability: Advancing the player experience (pp. 187–205). Burlington: Morgan Kaufmann.Google Scholar
  35. Hugdahl, K. (1995). Psychophysiology: The mind-body perspective. Cambridge: Harvard University Press.Google Scholar
  36. Izard, C. E. (1972). Patterns of emotions: A new analysis of anxiety and depression. New York: Academic.Google Scholar
  37. James, W. (1884). What is an emotion? Mind, 9(34), 188–205.CrossRefGoogle Scholar
  38. Jasper, H. H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology, 10, 370–375.CrossRefGoogle Scholar
  39. Kivikangas, J. M., Chanel, G., Cowley, B., Ekman, I., Salminen, M., Järvelä, S., & Ravaja, N. (2011a). A review of the use of psychophysiological methods in game research. Journal of Gaming & Virtual Worlds, 3(3), 181–199. doi: 10.1386/jgvw.3.3.181_1 Google Scholar
  40. Kivikangas, J. M., Nacke, L., & Ravaja, N. (2011b). Developing a triangulation system for digital game events, observational video, and psychophysiological data to study emotional responses to a virtual character. Entertainment Computing, 2(1), 11–16. doi: 10.1016/j.entcom.2011.03.006.CrossRefGoogle Scholar
  41. Kleinginna, P. R., & Kleinginna, A. M. (1981). A categorized list of emotion definitions, with suggestions for a consensual definition. Motivation and Emotion, 5(4), 345–379.CrossRefGoogle Scholar
  42. Lacey, J. I. (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In E. A. Rubinstein & M. B. Parloff (Eds.), Research in psychotherapy (pp. 160–208). Washington, DC: American Psychological Association. doi: 10.1037/10036-010.CrossRefGoogle Scholar
  43. Lane, R. D., & Nadel, L. (2002). Cognitive neuroscience of emotion. New York: Oxford University Press.Google Scholar
  44. Lang, P. J. (1995). The emotion probe. Studies of motivation and attention. American Psychologist, 50, 372–385.CrossRefGoogle Scholar
  45. Lange, C. G. (1912). The mechanism of the emotions. In B. Rand (Ed.), The classical psychologists (pp. 672–684). Boston: Houghton Mifflin.Google Scholar
  46. Larsen, J. T., McGraw, A. P., & Cacioppo, J. T. (2001). Can people feel happy and sad at the same time? Journal of Personality and Social Psychology, 81(4), 684–696. doi: 10.1037/0022-3514.81.4.684.CrossRefGoogle Scholar
  47. Lazarus, R. S. (1968). Emotions and adaptation: Conceptual and empirical relations. In Nebraska symposium on motivation. Lincoln: University of Nebraska Press.Google Scholar
  48. LeDoux, J. (1998). The emotional brain. London: Orion Publishing Group.Google Scholar
  49. Lewis, M., Haviland-Jones, J. M., & Barrett, L. F. (2010). Handbook of emotions (3rd ed.). New York: Guilford Press.Google Scholar
  50. Lykken, D. T., & Venables, P. H. (1971). Direct measurement of skin conductance: A proposal for standardization. Psychophysiology, 8(5), 656–672. doi: 10.1111/j.1469-8986.1971.tb00501.x.CrossRefGoogle Scholar
  51. Mandryk, R. (2008). Physiological measures for game evaluation. In K. Isbister & N. Schaffer (Eds.), Game usability: Advice from the experts for advancing the player experience (pp. 207–235). Burlington: Morgan Kaufmann.Google Scholar
  52. Mandryk, R. L., & Atkins, M. S. (2007). A fuzzy physiological approach for continuously modeling emotion during interaction with play environments. International Journal of Human Computer Studies, 65(4), 329–347. doi: 10.1016/j.ijhcs.2006.11.011.CrossRefGoogle Scholar
  53. Mandryk, R. L., Inkpen, K. M., & Calvert, T. W. (2006). Using psychophysiological techniques to measure user experience with entertainment technologies. Behavior & Information Technology, 25(2), 141–158. doi: 10.1080/01449290500331156.CrossRefGoogle Scholar
  54. Mirza-Babaei, P. (2011). Understanding the contribution of biometrics to games user research. In Proceedings of “Think Design Play: The fifth international conference of the Digital Research Association” (DIGRA 2011), Hilversum. Last accessed 19 Mar 2013.
  55. Mirza-Babaei, P., Nacke, L. E., Fitzpatrick, G., White, G., McAllister, G., & Collins, N. (2012). Biometric storyboards: Visualising game user research data. In Proceedings of the 2012 ACM annual conference extended abstracts on Human Factors in Computing Systems Extended Abstracts (CHI EA ’12) (pp. 2315–2320). Austin: ACM. doi:10.1145/2223656.2223795.Google Scholar
  56. Mirza-Babaei, P., Nacke, L., Gregory, J., Collins, N., & Fitzpatrick, G. (2013). How does it play better? Exploring user testing and biometric storyboards in games user research. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (CHI 2013). To appear.Google Scholar
  57. Nacke, L. E. (2009). Affective ludology: Scientific measurement of user experience in interactive entertainment. Ph.D. thesis, Blekinge Institute of Technology, Karlskrona, Sweden.Google Scholar
  58. Nacke, L., & Lindley, C. A. (2008). Flow and immersion in first-person shooters: Measuring the player’s gameplay experience. In Proceedings of the 2008 conference on future play: Research, play, share (Future Play ’08) (pp. 81–88). Toronto: ACM. doi: 10.1145/1496984.1496998.
  59. Nacke, L., Lindley, C., & Stellmach, S. (2008) Log who’s playing: Psychophysiological game analysis made easy through event logging. In P. Markopoulos, Bd. Ruyter, W. IJsselsteijn, D. Rowland (Eds.), Proceedings of Fun and Games, Second International Conference, Eindhoven, The Netherlands, October 20–21, 2008 (Lecture Notes in Computer Science) (pp. 150–157). Dordrecht: Springer. doi: 10.1007/978-3-540-88322-7_15
  60. Nacke, L. E., Grimshaw, M. N., & Lindley, C. A. (2010). More than a feeling: Measurement of sonic user experience and psychophysiology in a first-person shooter game. Interacting with Computers, 22(5), 336–343. doi: 10.1016/j.intcom.2010.04.005.CrossRefGoogle Scholar
  61. Nacke, L. E., Kalyn, M., Lough, C., & Mandryk, R. L. (2011). Biofeedback game design: Using direct and indirect physiological control to enhance game interaction. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (CHI ’11) (pp. 103–112). Vancouver: ACM. doi: 10.1145/1978942.1978958.
  62. Nishimoto, S., Vu An, T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant Jack, L. (2011). Reconstructing visual experiences from brain activity evoked by natural movies. Current Biology: CB, 21(19), 1641–1646.CrossRefGoogle Scholar
  63. Panksepp, J. (2004). Affective neuroscience: The foundations of human and animal emotions. Oxford, UK: Oxford University Press.Google Scholar
  64. Pelachaud, C. (2012). Emotion-oriented systems. Hoboken: Wiley.Google Scholar
  65. Picard, R. W. (1997). Affective computing. Cambridge, MA: MIT Press.Google Scholar
  66. Plutchik, R. (1980). A general psychoevolutionary theory of emotion. In R. Plutchik & H. Kellerman (Eds.), Emotion: Theory, research, and experience (Vol. 1, 3, pp. 3–31). New York: Academic.Google Scholar
  67. Plutchik, R. (1991). The emotions. Lanham: University Press of America.Google Scholar
  68. Prokasy, W. F., & Raskin, D. C. (1973). Electrodermal activity in psychological research. New York: Academic.Google Scholar
  69. Ravaja, N. (2004). Contributions of psychophysiology to media research: Review and recommendations. Media Psychology, 6(2), 193–235. doi: 10.1207/s1532785xmep0602_4.CrossRefGoogle Scholar
  70. Ravaja, N., Turpeinen, M., Saari, T., Puttonen, S., & Keltikangas-Järvinen, L. (2008). The psychophysiology of James Bond: Phasic emotional responses to violent video game events. Emotion, 8(1), 114–120. doi: 10.1037/1528-3542.8.1.114.CrossRefGoogle Scholar
  71. Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. doi: 10.1037/h0077714.CrossRefGoogle Scholar
  72. Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145–172. doi: 10.1037/0033-295x.110.1.145.CrossRefGoogle Scholar
  73. Sander, D., & Scherer, K. R. (2009). The Oxford companion to emotion and the affective sciences. Oxford/New York: Oxford University Press.Google Scholar
  74. Schachter, S. (1964). The interaction of cognitive and physiological determinants of emotional state. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 1, pp. 49–80). New York: Academic.Google Scholar
  75. Schachter, S., & Singer, J. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69, 379–399.CrossRefGoogle Scholar
  76. Scherer, K. R. (1984). Emotion as a multicomponent process: A model and some cross-cultural data. Review of Personality & Social Psychology, 5, 37–63.Google Scholar
  77. Scherer, K. R., Bänziger, T., & Roesch, E. B. (2010). Blueprint for affective computing: A sourcebook. Oxford/New York: Oxford University Press.Google Scholar
  78. Smith, M. E., Gevins, A., Brown, H., Karnik, A., & Du, R. (2001). Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction. Human Factors: The Journal of the Human Factors and Ergonomics Society, 43(3), 366–380. doi: 10.1518/001872001775898287.CrossRefGoogle Scholar
  79. Stemmler, G., Aue, T., & Wacker, J. (2007). Anger and fear: Separable effects of emotion and motivational direction on somatovisceral responses. International Journal of Psychophysiology, 66(2), 141–153. doi: 10.1016/j.ijpsycho.2007.03.019.CrossRefGoogle Scholar
  80. Stern, R. M., Ray, W. J., & Quigley, K. S. (2001). Psychophysiological recording (2nd ed.). New York: Oxford University Press.Google Scholar
  81. Tassinary, L. G., Cacioppo, J. T., & Vanman, E. J. (2000). The skeletomotor system: Surface electromyography. Handbook of Psychophysiology, 2, 274–278.Google Scholar
  82. Waterink, W., & van Boxtel, A. (1994). Facial and jaw-elevator EMG activity in relation to changes in performance level during a sustained information processing task. Biological Psychology, 37(3), 183–198. doi: 10.1016/0301-0511(94)90001-9.CrossRefGoogle Scholar
  83. Watson, D., Wiese, D., Vaidya, J., & Tellegen, A. (1999). The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. Journal of Personality and Social Psychology, 76(5), 820–838.CrossRefGoogle Scholar
  84. Yannakakis, G. N., & Hallam, J. (2008). Entertainment modeling through physiology in physical play. International Journal of Human Computer Studies, 66(10), 741–755. doi: 10.1016/j.ijhcs.2008.06.004.CrossRefGoogle Scholar
  85. Yannakakis, G. N., Hallam, J., & Lund, H. H. (2008). Entertainment capture through heart rate activity in physical interactive playgrounds. User Modeling and User-Adapted Interaction, 18(1), 207–243.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.HCI and Game Science Group, Faculty of Business and Information TechnologyUniversity of Ontario Institute of TechnologyOshawaCanada

Personalised recommendations