Epidemiology and Genetics of Neonatal Tumours

  • Charles StillerEmail author


Neoplasms are rare in neonates, although somewhat more frequent than in older children. In Great Britain, for birth years 1988–2007, the National Registry of Childhood Tumours recorded 394 cases of cancer (including non-malignant CNS tumours) in live-born infants less than 28 days of age. The risk of neonatal cancer was 27.6 per million live births or 1 in 36,170, equivalent to an incidence of 361 per million person-years and double the rate over the remainder of the first year of life. The most frequent cancers were germ-cell tumours (24%), neuroblastoma (23%), leukaemia (18%) and CNS tumours (13%). Cancers probably account for a minority of neonatal neoplasms, so that the total risk of benign and malignant tumours exceeds 1 in 18,000. While the short-term prognosis of neonatal cancer is rather poor, the probability of survival conditional on surviving one year from diagnosis is much higher than in older children. Survival from leukaemia, embryonal CNS tumours and rhabdomyosarcoma is especially poor for neonates, whereas neonates with neuroblastoma have much higher survival than children aged 1 year and over. The proportion of neonatal cancers associated with pathogenic germline mutations seems unlikely to be much lower than 10%; in addition, a substantial proportion are associated with chromosomal abnormalities. Exogenous risk factors are probably only relevant if exposure is prenatal. The most plausible from among the many that have been investigated are exposure to ionizing radiation and some pollutants during pregnancy and some dietary factors.


Neonatal cancer Epidemiology Survival statistics Outcomes 


  1. 1.
    Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International Classification Of Childhood Cancer, Third Edition. Cancer. 2005;103:1457–67.CrossRefPubMedGoogle Scholar
  2. 2.
    Gurney JG, Ross JA, Wall DA, Bleyer WA, Severson RK, Robison LL. Infant cancer In The U. S.: histology-specific incidence and trends, 1973 to 1992. J Pediatr Hematol Oncol. 1997;19:428–32.CrossRefPubMedGoogle Scholar
  3. 3.
    Stiller C. Childhood cancer In Britain: incidence, survival, mortality. Oxford: Oxford University Press; 2007.CrossRefGoogle Scholar
  4. 4.
    Brodeur GM, Pritchard J, Berthold F, NLT C, Castel V, Castleberry RP, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.CrossRefPubMedGoogle Scholar
  5. 5.
    Gigliotti AR, Di Cataldo A, Sorrentino S, Parodi S, Rizzo A, Buffa P, et al. Neuroblastoma in the newborn. A study of the Italian Neuroblastoma Registry. Eur J Cancer. 2009;45:3220–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Brodeur GM, Look AT, Shimada H, Hamilton VM, Maris JM, Hann HW, et al. Biological aspects of neuroblastomas identified by mass screening in Quebec. Med Pediatr Oncol. 2001;36:157–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Moppett J, Haddadin I, Foot AB. Neonatal neuroblastoma. Arch Dis Child Fetal Neonatal Ed. 1999;81:F134–7.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Grundy R, Anderson J, Gaze M, Gerrard M, Glaser A, Gordon A, et al. Congenital alveolar rhabdomyosarcoma: clinical and molecular distinction from alveolar rhabdomyosarcoma in older children. Cancer. 2001;91:606–12.CrossRefPubMedGoogle Scholar
  9. 9.
    Slater O, Shipley J. Clinical relevance of molecular genetics to paediatric sarcomas. J Clin Pathol. 2007;60:1187–94.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Parkes SE, Muir KR, Southern L, Cameron AH, Darbyshire PJ, Stevens MC. Neonatal tumours: a thirty-year population-based study. Med Pediatr Oncol. 1994;22:309–17.CrossRefPubMedGoogle Scholar
  11. 11.
    Koh TH, Cooper JE, Newman CL, Walker TM, Kiely EM, Hoffmann EB. Pancreatoblastoma in a neonate with Wiedemann-Beckwith syndrome. Eur J Pediatr. 1986;145:435–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Minkov M, Prosch H, Steiner M, Grois N, Pötschger U, Kaatsch P, et al. Langerhans cell histiocytosis in neonates. Pediatr Blood Cancer. 2005;45:802–7.CrossRefPubMedGoogle Scholar
  13. 13.
    England RJ, Haider N, Vujanic GM, Kelsey A, Stiller CA, Pritchard-Jones K et al. Mesoblastic nephroma: a report of the United Kingdom Children’s Cancer and Leukaemia Group (CCLG). Pediatr Blood Cancer. 2011; 56:744–8.CrossRefGoogle Scholar
  14. 14.
    Swamy R, Embleton N, Hale J. Sacrococcygeal teratoma over two decades: birth prevalence, prenatal diagnosis and clinical outcomes. Prenat Diagn. 2008;28:1048–51.CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, et al. Germline mutations in predisposition genes in childhood cancer. N Engl J Med. 2015;373:2336–46.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hasle H. Pattern of malignant disorders in individuals with Down’s syndrome. Lancet Oncol. 2001;2:429–36.CrossRefPubMedGoogle Scholar
  17. 17.
    Massey GV. Transient leukemia in newborns with Down syndrome. Pediatr Blood Cancer. 2005;44:29–32.CrossRefGoogle Scholar
  18. 18.
    Crispino JD. Gata1 mutations in down syndrome: implications for biology and diagnosis of children with transient myeloproliferative disorder and acute megakaryoblastic leukemia. Pediatr Blood Cancer. 2005;44:40–4.CrossRefGoogle Scholar
  19. 19.
    Biondi A, Cimino G, Pieters R, Pui C-H. biological and therapeutic aspects of infant leukemia. Blood. 2000;96:24–33.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood. 2003;102:2321–33.CrossRefPubMedGoogle Scholar
  21. 21.
    Guha N, Chang JS, Chokkalingam AP, Wiemels JL, Smith MT, Buffler PA. Nq01 polymorphisms and de novo childhood leukaemia: a huge review and meta-analysis. Am J Epidemiol. 2008;168:1221–32.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Guha N, Chang JS, Chokkalingam AP, Wiemels JL, Smith MT, Buffler PA. Nq01 polymorphisms and de novo childhood leukaemia: a huge review and meta-analysis. Am J Epidemiol. 2009;169:1280.CrossRefGoogle Scholar
  23. 23.
    Li C, Zhou Y. Association between NQO1 C609T polymorphism and acute lymphoblastic leukemia risk: evidence from an updated meta-analysis based on 17 case-control studies. J Cancer Res Clin Oncol. 2014;140:873–81.CrossRefPubMedGoogle Scholar
  24. 24.
    Zanrosso CW, Emerenciano M, Gonçalves BA, Faro A, Koifman S, Pombo-de-Oliveira MS. N-Acetyltransferase 2 polymorphisms and susceptibility to infant leukemia with maternal exposure to dipyrone during pregnancy. Cancer Epidemiol Biomarkers Prev. 2010;19:3037–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Emerenciano M, Barbosa TC, Lopes BA, Blunck CB, Faro A, Andrade C, et al. ARID5B polymorphism confers an increased risk to acquire specific Mll rearrangements in early childhood leukemia. BMC Cancer. 2014;14:127.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lopes BA, Emerenciano M, Gonçalves BAA, Vieira TM, Rossini A, Pombo-de-Oliveira MS. Polymorphisms in CYP1B1, CYP3A5, GSTT1, and SULT1A1 are associated with early age acute leukemia. PLoS One. 2015;10:E0127308.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Strullu M, Caye A, Lachenaud J, Cassinat B, Gazal S, Fenneteau O, et al. Juvenile Myelomonocytic Leukaemia And Noonan Syndrome. J Med Genet. 2014;51:689–97.CrossRefPubMedGoogle Scholar
  28. 28.
    Bosse KR, Maris JM. Advances in the translational genomics of neuroblastoma; from improving risk stratification and revealing novel biology to identifying actionable genomic alterations. Cancer. 2016;122:20–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Nguyen LB, Diskin SJ, Capasso M, Wang K, Diamond MA, Glessner J et al. Phenotype restricted genome-wide association study using a gene-centric approach identifies three low-risk neuroblastoma susceptibility loci. PLoS Genet. 2011;7:E1002026.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lohmann DR, Gallie BL. Retinoblastoma: revisiting the model prototype of inherited cancer. Am J Med Genet C Semin Med Genet. 2004;129:23–8.CrossRefGoogle Scholar
  31. 31.
    Varley JM. Germline Tp53 mutations and Li-Fraumeni syndrome. Hum Mutat. 2003;21:313–20.CrossRefGoogle Scholar
  32. 32.
    Diller L, Sexsmith E, Gottlieb A, FP L, Malkin D. Germline P53 mutations are frequently detected in young children with rhabdomyosarcoma. J Clin Invest. 1995;95:1606–11.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wagner J, Portwine C, Rabin K, Leclerc J-M, Narod SA, Malkin D. High frequency of germline P53 mutations in childhood adrenocortical cancer. J Natl Cancer Inst. 1994;86:1707–10.CrossRefPubMedGoogle Scholar
  34. 34.
    Varley JM, Mcgown G, Thorncroft M, James LA, Margison GP, Forster G, et al. Are there low-penetrance Tp53 alleles? Evidence from childhood adrenocortical tumors. Am J Hum Genet. 1999;65:995–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Custódio G, Ga P, Kiesel Filho N, Komechen H, Sabbaga CC, Rosati Ret AL. Impact of neonatal screening and surveillance for the TP53 R337H mutation on early detection of childhood adrenocortical tumors. J Clin Oncol. 2013;31:2619–26.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    McMaster ML, Goldstein AM, Parry DM. Clinical features distinguish childhood chordoma associated with tuberous sclerosis complex (TSC) from chordoma in the general paediatric population. J Med Genet. 2011;48:444–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lee-Jones L, Aligianis I, Davies PA, Puga A, Farndon PA, Stemmer-Rachamimov A, et al. Sacrococcygeal chordomas in patients with tuberous sclerosis complex show somatic loss of TSC1 or TSC2. Genes Chromosomes Cancer. 2004;41:80–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Yates JR, Maclean C, Higgins JN, Humphrey A, Le Maréchal K, Clifford M, et al. The tuberous sclerosis 2000 study: presentation, initial assessments and implications for diagnosis and management. Arch Dis Child. 2011;96:1020–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355:1345–56.CrossRefPubMedGoogle Scholar
  40. 40.
    Bourdeaut F, Lequin D, Brugières L, Reynaud S, Dufour C, Doz F, et al. Frequent hSNF5/INI1 germline mutations in patients with rhabdoid tumor. Clin Cancer Res. 2011;17:31–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Lapunzina P. Risk of tumorigenesis in overgrowth syndromes: a comprehensive review. Am J Med Genet C Semin Med Genet. 2005;137:53–71.CrossRefGoogle Scholar
  42. 42.
    Kuroiwa M, Sakamoto J, Shimada A, Suzuki N, Hirato J, Park MJ, et al. Manifestation of alveolar rhabdomyosarcoma as primary cutaneous lesions in a neonate with Beckwith-Wiedemann syndrome. J Pediatr Surg. 2009;44:E31–5.CrossRefPubMedGoogle Scholar
  43. 43.
    Worth LL, Slopis JM, Herzog CE. Congenital hepatoblastoma and schizencephaly in an infant with Beckwith-Wiedemann syndrome. Med Pediatr Oncol. 1999;33:591–3.CrossRefPubMedGoogle Scholar
  44. 44.
    D’Orazio JA. Inherited cancer syndromes in children and young adults. J Pediatr Hematol Oncol. 2010;32:195–228.Google Scholar
  45. 45.
    Zimmerman R, Schimmenti L, Spector L. A catalog of genetic syndromes in childhood cancer. Pediatr Blood Cancer. 2015;62:2071–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Poynter JN, Radzom AH, Spector LG, Puumala S, Robison LL, Chen Z, et al. Family history of cancer and malignant germ cell tumors in children: a report from the Children’s Oncology Group. Cancer Causes Control. 2010;21:181–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Agha MM, Williams JI, Marrett L, To T, Zipursky A, Dodds L. Congenital abnormalities and childhood cancer. Cancer. 2005;103:1939–48.CrossRefPubMedGoogle Scholar
  48. 48.
    Bjørge T, Cnattingius S, Lie RT, Tretli S, Engeland A. Cancer risk in children with birth defects and in their families: a population based cohort study of 5.2 million children from Norway And Sweden. Cancer Epidemiol Biomarkers Prev. 2008;17:500–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Partap S, Maclean J, Von Behren J, Reynolds P, Fisher PG. Birth anomalies and obstetric history as risks for childhood tumors of the central nervous system. Pediatrics. 2011;128:E652–7.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Dawson S, Charles AK, Bower C, de Klerk NH, Milne E. Risk of cancer among children with birth defects: a novel approach. Birth Defects Res A Clin Mol Teratol. 2015;103:284–91.CrossRefPubMedGoogle Scholar
  51. 51.
    Johnson KJ, Roesler MA, Linabery AM, Hilden JM, Davies SM, Ross JA. Infant leukemia and congenital abnormalities: a Children’s Oncology Group Study. Pediatr Blood Cancer. 2010;55:95–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Heck JE, Ritz B, Hung RJ, Hashibe M, Boffetta P. The epidemiology of neuroblastoma: a review. Paediatr Perinat Epidemiol. 2009;23:125–43.CrossRefPubMedGoogle Scholar
  53. 53.
    Menegaux F, Olshan AF, Reitnauer PJ, Blatt J, Cohn SL. Positive association between congenital anomalies and risk of neuroblastoma. Pediatr Blood Cancer. 2005;45:649–55.CrossRefPubMedGoogle Scholar
  54. 54.
    Munzer C, Menegaux F, Lacour B, Valteau-Couanet D, Michon J, Coze C, et al. Birth-related characteristics, congenital malformation, maternal reproductive history and neuroblastoma: the ESCALE study (SFCE). Int J Cancer. 2008;122:2315–21.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Bjørge T, Engeland A, Tretli S, Heuch I. Birth and parental characteristics and risk of neuroblastoma in a population-based Norwegian cohort study. Br J Cancer. 2008;99:1165–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Johnston HE, Mann JR, Williams J, Waterhouse JA, Birch JM, Cartwright RA, et al. The Inter-Regional, Epidemiological Study of Childhood Cancer (IRESCC): case-control study in children with germ cell tumours. Carcinogenesis. 1986;7:717–22.CrossRefPubMedGoogle Scholar
  57. 57.
    Fraumeni JF Jr, Li FP, Dalager N. Teratomas in children: epidemiologic features. J Natl Cancer Inst. 1973;51:1425–30.CrossRefPubMedGoogle Scholar
  58. 58.
    Narod SA, Hawkins MM, Robertson CM, Stiller CA. Congenital anomalies and childhood cancer in Great Britain. Am J Hum Genet. 1997;60:474–85.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Altmann AE, Halliday JL, Giles GG. Associations between congenital malformations and childhood cancer. A register-based case-control study. Br J Cancer. 1998;78:1244–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nishi M, Miyake H, Takeda T, Hatae Y. Congenital malformations and childhood cancer. Med Pediatr Oncol. 2000;34:250–4.CrossRefPubMedGoogle Scholar
  61. 61.
    Merks JHM, Caron HN, Hennekam RCM. High incidence of malformation syndromes in a series of 1,073 children with cancer. Am J Med Genet A. 2005;134:132–43.CrossRefGoogle Scholar
  62. 62.
    Rankin J, Silf KA, Pearce MS, Parker L, Ward Platt M. Congenital anomaly and childhood cancer: a population-based, record linkage study. Pediatr Blood Cancer. 2008;51:608–12.CrossRefPubMedGoogle Scholar
  63. 63.
    Johnson KJ, Ross JA, Poynter JN, Linabery AM, Robison LL, Shu XO. Paediatric germ cell tumours and congenital abnormalities: a Children’s Oncology Group Study. Br J Cancer. 2009;101:518–21.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lynch SA, Wang Y, Strachan T, Burn J, Lindsay S. Autosomal dominant sacral agenesis: Currarino syndrome. J Med Genet. 2000;37:561–6.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    O’Neill KA, Murphy MF, Bunch KJ, Puumala SE, Carozza SE, Chow EJ, et al. Infant birthweight and risk of childhood cancer: international population-based case control studies of 40 000 cases. Int J Epidemiol. 2015;44:153–68.CrossRefPubMedGoogle Scholar
  66. 66.
    Caughey RW, Michels KB. Birth weight and childhood leukemia: a meta-analysis and review of the current evidence. Int J Cancer. 2009;124:2658–70.CrossRefPubMedGoogle Scholar
  67. 67.
    Harder T, Plagemann A, Harder A. Birth weight and subsequent risk of childhood primary brain tumors: a meta-analysis. Am J Epidemiol. 2008;168:366–73.CrossRefPubMedGoogle Scholar
  68. 68.
    Spector LG, Davies SM, Robison LL, Hilden JM, Roesler M, Ross JA. Birth characteristics, maternal reproductive history, and the risk of infant leukemia: a report from The Children’s Oncology Group. Cancer Epidemiol Biomarkers Prev. 2007;16:128–34.CrossRefPubMedGoogle Scholar
  69. 69.
    Koifman S, Pombo-de-Oliveira MS, And The Brazilian Collaborative Study Group Of Infant Acute Leukemia. High birth weight as an important risk factor for infant leukemia. Br J Cancer. 2008;98:664–7.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    O’Neill KA, Bunch KJ, Vincent TJ, Spector LG, Moorman AV, MFG M. Immunophenotype and cytogenetic characteristics in the relationship between birth weight and childhood leukemia. Pediatr Blood Cancer. 2012;58:7–11.CrossRefPubMedGoogle Scholar
  71. 71.
    Harder T, Plagemann A, Harder A. Birth weight and risk of neuroblastoma: a meta-analysis. Int J Epidemiol. 2010;39:746–56.CrossRefPubMedGoogle Scholar
  72. 72.
    Spector LG, Birch J. The epidemiology of hepatoblastoma. Pediatr Blood Cancer. 2012;59:776–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Turcotte LM, Georgieff MK, Ross JA, Feusner JH, Tomlinson GE, Malogolowkin MH, et al. Neonatal medical exposures and characteristics of low birth weight hepatoblastoma cases: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2014;61:2018–23.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Shankar S, Davies S, Giller R, Krailo M, Davis M, Gardner K, et al. In Utero Exposure To Female Hormones And Germ Cell Tumors In Children. Cancer. 2006;106:1169–77.CrossRefPubMedGoogle Scholar
  75. 75.
    Shu XO, Nesbit ME, Buckley JD, Krailo MD, Robison LL. An exploratory analysis of risk factors for childhood malignant germ-cell tumors: report from the Children’s Cancer Group (Canada, United States). Cancer Causes Control. 1995;6:187–98.CrossRefPubMedGoogle Scholar
  76. 76.
    Brace V, Grant SR, Brackley KJ, Kilby MD, Whittle MJ. Prenatal diagnosis and outcome in sacrococcygeal teratomas: a review of cases between 1992 and 1998. Prenat Diagn. 2000;20:51–5.CrossRefPubMedGoogle Scholar
  77. 77.
    Puumala SE, Spector LG, Wall MM, Robison LL, Heerema NA, Roesler MA, et al. Infant leukemia and parental infertility or its treatment: a Children’s Oncology Group report. Hum Reprod. 2010;25:1561–8.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Johnson KJ, Puumala SE, Soler JT, Spector LG. Perinatal characteristics and risk of neuroblastoma. Int J Cancer. 2008;123:1166–72.CrossRefPubMedGoogle Scholar
  79. 79.
    Bluhm E, McNeil DE, Cnattingius S, Gridley G, El Ghormli L, Fraumeni JF Jr. Prenatal and perinatal risk factors for neuroblastoma. Int J Cancer. 2008;123:2885–90.CrossRefPubMedGoogle Scholar
  80. 80.
    McLaughlin CC, Baptiste MS, Schymura MJ, Zdeb MS, Nasca PC. Perinatal risk factors for neuroblastoma. Cancer Causes Control.2008;20:289–301.CrossRefGoogle Scholar
  81. 81.
    Ghali MH, Yoo K-Y, Flannery JT, Dubrow R. Association between childhood rhabdomyosarcoma and maternal history of stillbirths. Int J Cancer. 1992;50:365–8.CrossRefPubMedGoogle Scholar
  82. 82.
    Grufferman S, Ruymann F, Ognjanovic S, Erhardt EB, Maurer HM. Prenatal X-ray exposure and rhabdomyosarcoma in children: a report from the Children’s Oncology Group. Cancer Epidemiol Biomarkers Prev. 2009;18:1271–6.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Williams CL, Bunch KJ, Stiller CA, Murphy MFG, Botting BJ, Wallace WH, et al. Cancer risk among children born after assisted conception. N Engl J Med. 2013;369:1819–27.CrossRefPubMedGoogle Scholar
  84. 84.
    Sundh KJ, Henningsen AK, Källen K, Bergh C, Romundstad LB, Gissler M, et al. Cancer in children and young adults born after assisted reproductive technology: A Nordic cohort study from the Committee Of Nordic Art And Safety (Conartas). Hum Reprod. 2014;29:2050–7.CrossRefPubMedGoogle Scholar
  85. 85.
    Moll AC, Imhof SM, Cruysberg JR, Schouten-van Meeteren AY, Boers M, van Leeuwen FE. Incidence of retinoblastoma in children born after in-vitro fertilisation. Lancet. 2003;361:309–10.CrossRefPubMedGoogle Scholar
  86. 86.
    Marees T, Dommering CJ, Imhof SM, Kors WA, Ringens PJ, van Leeuwen FE, et al. Incidence of retinoblastoma in Dutch children conceived by IVF: an expanded study. Hum Reprod. 2009;24:3220–4.CrossRefPubMedGoogle Scholar
  87. 87.
    Foix-L’Hélias L, Aerts I, Marchand L, Lumbroso-Le Rouic L, Gauthier-Villars M, Labrune P et al. Are children born after infertility treatment at increased risk of retinoblastoma? Hum Reprod. 2012;27:2186–92.CrossRefPubMedGoogle Scholar
  88. 88.
    Wakeford R, Kendall GM, Little MP. The proportion of childhood leukaemia incidence in great britain that may be caused by natural background ionizing radiation. Leukemia. 2009;23:770–6.CrossRefPubMedGoogle Scholar
  89. 89.
    Kendall GM, Little MP, Wakeford R. Numbers and proportions of leukemias in young people and adults induced by radiation of natural origin. Leuk Res. 2011;35:1039–43.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ross JA, Potter JD, Reaman GH, Pendergrass TW, Robison LL. Maternal exposure to potential inhibitors of DNA topoisomerase ii and infant leukemia (United States): a report from the Children’s Cancer Group. Cancer Causes Control. 1996;7:581–90.CrossRefPubMedGoogle Scholar
  91. 91.
    Spector LG, Xie Y, Robison LL, Heerema NA, Hilden JM, Lange B, et al. Maternal diet and infant leukemia: the dna topoisomerase ii inhibitor hypothesis: a report from the Children’s Oncology Group. Cancer Epidemiol Biomarkers Prev. 2005;14:651–5.CrossRefPubMedGoogle Scholar
  92. 92.
    Slater ME, Linabery AM, Spector LG, Johnson KJ, Hilden JM, Heerema NA, et al. Maternal exposure to household chemicals and risk of infant leukemia: a report from the Children’s Oncology Group. Cancer Causes Control. 2011;22:1197–204.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Heck JE, Park AS, Qiu J, Cockburn M, Ritz B. An exploratory study of anmbient air toxics exposure inn pregnancy and the risk of neuroblastoma in offspring. Environ Res. 2013;127:1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ghosh JK, Heck JE, Cockburn M, Su J, Jerrett M, Ritz B. Prenatal exposure to traffic-related air pollution and risk of early childhood cancers. Am J Epidemiol. 2013;178:1233–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Slater ME, Linabery AM, Blair CK, Spector LG, Heerema NA, Robison LL, et al. Maternal prenatal cigarette, alcohol and illicit drug use and risk of infant leukaemia: a report from the Children’s Oncology Group. Paediatr Perinat Epidemiol. 2011;25:559–65.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Satgé D, Sasco AJ, Little J. Antenatal therapeutic drug exposure and fetal/neonatal tumours: review of 89 cases. Paediatr Perinat Epidemiol. 1998;12:84–117.CrossRefPubMedGoogle Scholar
  97. 97.
    Yang Q, Olshan AF, Bondy ML, Shah NR, Pollock BH, Seeger RC, et al. Parental smoking and alcohol consumption and risk of neuroblastoma. Cancer Epidemiol Biomarkers Prev. 2000;9:967–72.PubMedGoogle Scholar
  98. 98.
    Bonaventure A, Simpson J, Ansell P, Roman E, Lightfoot T. prescription drug use during pregnancy and risk of childhood cancer—is there an association? Cancer Epidemiol. 2015;39:73–8.CrossRefPubMedGoogle Scholar
  99. 99.
    Michalek AM, Buck GM, Nasca PC, Freedman AN, Baptiste MS, Mahoney MC. Gravid health status, medication use, and risk of neuroblastoma. Am J Epidemiol. 1996;143:996–1001.CrossRefPubMedGoogle Scholar
  100. 100.
    Olshan AF, Smith JC, Bondy ML, Neglia JP, Pollock BH. Maternal vitamin use and reduced risk of neuroblastoma. Epidemiology. 2002;13:575–80.CrossRefPubMedGoogle Scholar
  101. 101.
    French AE, Grant R, Weitzman S, Ray JG, Vermeulen MJ, Sung L, et al. Folic acid food fortification is associated with a decline in neuroblastoma. Clin Pharmacol Ther. 2003;74:288–94.CrossRefPubMedGoogle Scholar
  102. 102.
    Bognár M, Ponyi A, Hauser P, Müller J, Constantin T, Jakab Z, et al. Improper supplementation habits of folic acid intake by Hungarian pregnant women: improper recommendations. J Am Coll Nutr. 2008;27:499–504.CrossRefPubMedGoogle Scholar
  103. 103.
    Bunin GR, Felice MA, Davidson W, Friedman DL, Shields CL, Maidment A, et al. Medical radiation exposure and risk of retinoblastoma resulting from new germline RB1 mutation. Int J Cancer. 2011;128:2393–404.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Reulen RC, Winter DL, Frobisher C, Lancashire ER, Stiller CA, Jenney ME, et al. Long-term cause-specific mortality among survivors of childhood cancer. JAMA. 2010;304:172–9.CrossRefPubMedGoogle Scholar
  105. 105.
    Reulen RC, Frobisher C, Winter DL, Kelly J, Lancashire ER, Stiller CA, et al. Long-term risks of subsequent primary neoplasms among survivors of childhood cancer. JAMA. 2011;305:2311–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Armstrong GT, Liu Q, Yasui Y, Neglia JP, Leisenring W, Robison LL, et al. Late mortality among 5-year survivors of childhood cancer: a summary from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27:2328–38.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Diller L, Chow EJ, Gurney JG, Hudson MM, Kadin-Lottick NS, Kawashima TI, et al. Chronic disease in the childhood cancer survivor study cohort: a review of published findings. J Clin Oncol. 2009;27:2339–55.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Meadows AT, Friedman DL, Neglia JP, Mertens AC, Donaldson SS, Stovall M, et al. Second neoplasms in survivors of childhood cancer: findings from the childhood cancer survivor study cohort. J Clin Oncol. 2009;27:2356–62.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Abramson DH, Du TT, Beaverson KL. Neonatal retinoblastoma in the first month of life. Arch Ophthalmol. 2002;120:738–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Cancer Registration and Analysis ServicePublic Health EnglandOxfordUK

Personalised recommendations