Sentic Computing for Social Media Analysis, Representation, and Retrieval

  • Erik Cambria
  • Marco Grassi
  • Soujanya Poria
  • Amir Hussain
Chapter
Part of the Computer Communications and Networks book series (CCN)

Abstract

As the web is rapidly evolving, web users are evolving with it. In the era of social colonisation, people are getting more and more enthusiastic about interacting, sharing and collaborating through social networks, online communities, blogs, wikis and other online collaborative media. In recent years, this collective intelligence has spread to many different areas in the web, with particular focus on fields related to our everyday life such as commerce, tourism, education, and health. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. To overcome such obstacle, we need to explore more concept-level approaches that rely more on the implicit semantic texture of natural language, rather than its explicit syntactic structure. To this end, we further develop and apply sentic computing tools and techniques to the development of a novel unified framework for social media analysis, representation and retrieval. The proposed system extracts semantics from natural language text by applying graph mining and multidimensionality reduction techniques on an affective common sense knowledge base and makes use of them for inferring the cognitive and affective information associated with social media.

References

  1. 1.
    Minsky, M.: The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind. Simon and Schuster, New York (2006)Google Scholar
  2. 2.
    Cambria, E., Hussain, A.: Sentic Computing: Techniques, Tools, and Applications. Springer, Dordrecht (2012)Google Scholar
  3. 3.
    Charles, D.: The Expression of the Emotions in Man and Animals. John Murray, London (1872)Google Scholar
  4. 4.
    James, W.: What is an emotion? Mind 34, 188–205 (1884)CrossRefGoogle Scholar
  5. 5.
    Osgood, C., May, W., Miron, M.: Cross-cultural universals of affective meaning. University of Illinois, Urbana (1975)Google Scholar
  6. 6.
    Lutz, C., White, G.: The anthropology of emotions. Ann. Rev. Anthropol. 15, 405–436 (1986)CrossRefGoogle Scholar
  7. 7.
    Turkle, S.: The Second Self: Computers and the Human Spirit. Simon and Schuster, New York (1984)Google Scholar
  8. 8.
    Scherer, K.: Studying the emotion-antecedent appraisal process: an expert system approach. Cognit. Emot. 7, 325–355 (1993)CrossRefGoogle Scholar
  9. 9.
    Picard, R.: Affective computing. MIT, Boston (1997)Google Scholar
  10. 10.
    Cambria, E., Hupont, I., Hussain, A., Cerezo, E., Baldassarri, S.: Sentic avatar: multimodal affective conversational agent with common sense. In: Esposito, A., Hussain, A., Faundez-Zanuy, M., Martone, R., Melone, N. (eds.) Toward Autonomous, Adaptive, and Context-Aware Multimodal Interfaces: Theoretical and Practical Issues. Lecture Notes in Computer Science, vol. 6456, pp. 82–96. Springer, Berlin/Heidelberg (2011)Google Scholar
  11. 11.
    Cambria, E., Olsher, D., Kwok, K.: Sentic activation: a two-level affective common sense reasoning framework. In: Proceedings of the AAAI, Toronto pp. 186–192 (2012)Google Scholar
  12. 12.
    Cambria, E., Olsher, D., Kwok, K.: Sentic panalogy: swapping affective common sense reasoning strategies and foci. In: Proceedings of the CogSci, Sapporo, pp. 174–179 (2012)Google Scholar
  13. 13.
    Cambria, E., Hussain, A., Havasi, C., Eckl, C.: SenticSpace: visualizing opinions and sentiments in a multi-dimensional vector space. In: Setchi, R., Jordanov, I., Howlett, R., Jain, L. (eds.) Knowledge-Based and Intelligent Information and Engineering Systems. Lecture Notes in Artificial Intelligence, vol. 6279, pp. 385–393. Springer, Berlin (2010)Google Scholar
  14. 14.
    Liu, H., Singh, P.: ConceptNet: a practical commonsense reasoning toolkit. BT Technol. J. (2004)Google Scholar
  15. 15.
    Lenat, D., Guha, R.: Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project. Addison-Wesley, Boston (1989)Google Scholar
  16. 16.
    Mueller, E.: Commonsense Reasoning. Morgan Kaufmann, Amsterdam/Boston (2006)Google Scholar
  17. 17.
    Havasi, C., Speer, R., Alonso, J.: ConceptNet 3: a flexible, multilingual semantic network for common sense knowledge. In: Proceedings of the RANLP, Borovets (2007)Google Scholar
  18. 18.
    Speer, R.: Open mind commons: an inquisitive approach to learning common sense. In: Proceedings of the Workshop on Common Sense and Interactive Applications, Honolulu (2007)Google Scholar
  19. 19.
    Cambria, E., Hussain, A., Durrani, T., Havasi, C., Eckl, C., Munro, J.: Sentic computing for patient centered application. In: Proceedings of the IEEE ICSP, Beijing, pp. 1279–1282 (2010)Google Scholar
  20. 20.
    Havasi, C., Speer, R., Holmgren, J.: Automated color selection using semantic knowledge. In: Proceedings of the AAAI CSK, Arlington (2010)Google Scholar
  21. 21.
    Havasi, C., Speer, R., Pustejovsky, J., Lieberman, H.: Digital intuition: applying common sense using dimensionality reduction. IEEE Intell. Syst. 24(4), 24–35 (2009)CrossRefGoogle Scholar
  22. 22.
    Strapparava, C., Valitutti, A.: WordNet-affect: an affective extension of WordNet. In: Proceedings of the LREC, Lisbon (2004)Google Scholar
  23. 23.
    Wall, M., Rechtsteiner, A., Rocha, L.: Singular value decomposition and principal component analysis. In: Berrar, D., Dubitzky, W., Granzow, M. (eds.) A Practical Approach to Microarray Data Analysis, pp. 91–109. Kluwer Academic Publishers, Boston (2003)CrossRefGoogle Scholar
  24. 24.
    Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)MATHCrossRefGoogle Scholar
  25. 25.
    Plutchik, R.: The nature of emotions. Am. Sci. 89(4), 344–350 (2001)Google Scholar
  26. 26.
    Cambria, E., Mazzocco, T., Hussain, A., Eckl, C.: Sentic medoids: organizing affective common sense knowledge in a multi-dimensional vector space. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) Advances in Neural Networks. Lecture Notes in Computer Science, vol. 6677, pp. 601–610. Springer, Berlin (2011)Google Scholar
  27. 27.
    Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)CrossRefGoogle Scholar
  28. 28.
    Hartigan, J., Wong, M.: Algorithm AS 136: a k-means clustering algorithm. J. R. Stat. Soc. 28(1), 100–108 (1979)MATHGoogle Scholar
  29. 29.
    Park, H., Jun, C.: A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl. 36(2), 3336–3341 (2009)CrossRefGoogle Scholar
  30. 30.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)MATHGoogle Scholar
  31. 31.
    Cambria, E., Grassi, M., Hussain, A., Havasi, C.: Sentic computing for social media marketing. Multimed. Tools Appl. 59(2), 557–577 (2012)CrossRefGoogle Scholar
  32. 32.
    Lin, W., Wilson, T., Wiebe, J., Hauptmann, A.: Which side are you on? Identifying perspectives at the document and sentence levels. In: Proceedings of the Conference on Natural Language Learning, New York, pp. 109–116 (2006)Google Scholar
  33. 33.
    D’Mello, S., Craig, S., Sullins, J., Graesser, A.: Predicting affective states expressed through an emote-aloud procedure from autotutor’s mixed-initiative dialogue. Int. J. Artif. Intell. Educ. 16, 3–28 (2006)Google Scholar
  34. 34.
    D’Mello, S., Dowell, N., Graesser, A.: Cohesion relationships in tutorial dialogue as predictors of affective states. In: Proceedings of the Conference Artificial Intelligence in Education, pp. 9–16. Springer, New York (2009)Google Scholar
  35. 35.
    Danisman, T., Alpkocak, A.: Feeler: emotion classification of text using vector space model. In: Proceedings of the AISB, Aberdeen (2008)Google Scholar
  36. 36.
    Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: Proceedings of the ACM Symposium Applied Computing, pp. 1556–1560. ACM, New York (2008)Google Scholar
  37. 37.
    Ma, C., Osherenko, A., Prendinger, H., Ishizuka, M.: A chat system based on emotion estimation from text and embodied conversational messengers. In: Proceedings of the International Conference Active Media Technology, pp. 546–548. IEEE, Piscataway (2005)Google Scholar
  38. 38.
    Alm, C., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the HLT/EMNLP, pp. 347–354. Association for Computing Linguistics, Morristown (2005)Google Scholar
  39. 39.
    Grassi, M., Cambria, E., Hussain, A., Piazza, F.: Sentic web: a new paradigm for managing social media affective information. Cognit. Comput. 3(3), 480–489 (2011)CrossRefGoogle Scholar
  40. 40.
    Cambria, E., Benson, T., Eckl, C., Hussain, A.: Sentic PROMs: application of sentic computing to the development of a novel unified framework for measuring health-care quality. Expert Syst. Appl. 39(12), 10533–10543 (2012)CrossRefGoogle Scholar
  41. 41.
    Cambria, E., Song, Y., Wang, H., Hussain, A.: Isanette: a common and common sense knowledge base for opinion mining. In: Proceedings of the ICDM, Vancouver, pp. 315–322 (2011)Google Scholar
  42. 42.
    Havasi, C., Speer, R., Pustejovsky, J.: Coarse word-sense disambiguation using common sense. In: Proceedings of the AAAI CSK, Arlington (2010)Google Scholar
  43. 43.
    Grassi, M.: Developing HEO human emotions ontology. Lecture Notes in Computer Science, vol. 5707, pp. 244–251. Springer, Berlin/Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Erik Cambria
    • 1
  • Marco Grassi
    • 2
  • Soujanya Poria
    • 3
  • Amir Hussain
    • 4
  1. 1.Temasek LaboratoriesNational University of SingaporeSingaporeSingapore
  2. 2.Department of Information EngineeringUniversitá Politecnica delle MarcheAnconaItaly
  3. 3.Department of Computer Science and EngineeringJadavpur UniversityKolkataIndia
  4. 4.Department of Computing Science and MathematicsUniversity of StirlingScotlandUK

Personalised recommendations