Predicting User Tags in Social Media Repositories Using Semantic Expansion and Visual Analysis

  • Tomas Piatrik
  • Qianni Zhang
  • Xavier Sevillano
  • Ebroul Izquierdo
Chapter
Part of the Computer Communications and Networks book series (CCN)

Abstract

Manually annotating large scale content such as Internet videos is an expensive and consuming process. Furthermore, community-provided tags lack consistency and present numerous irregularities. This chapter aims to provide a forum for the state-of-the-art research in this emerging field, with particular focus on mechanisms capable of exploiting the full range of information available online to predict user tags automatically. The exploited information covers both semantic metadata including complementary information in external resources and embedded low-level features within the multimedia content. Furthermore, this chapter presents a framework for predicting general tags from the associated textual metadata and visual features. The goal of this framework is to simplify and improve the process of tagging online videos, which are unbounded to any particular domain. In this framework, the first step is to extract named entities exploiting complementary textual resources such as Wikipedia and WordNet. To facilitate the extraction of semantically meaningful tags from a largely unstructured textual corpus, this framework employs GATE natural language processing tools. Extending the functionalities of the built-in GATE named entities, the framework also integrates a bag-of-articles algorithm for effectively extracting relevant articles from the Wikipedia articles. Experiments were conducted for validation of the framework against MediaEval 2010 Wild Wild Web dataset for the tagging task.

References

  1. 1.
    Akbas, E., Yarman Vural, F.T.: Automatic image annotation by ensemble of visual descriptors. In: CVPR, Minneapolis, pp. 1–8 (2007)Google Scholar
  2. 2.
    Al-Khalifa, H.S., Davis, H.C.: Exploring the value of folksonomies for creating semantic metadata. IJSWIS 3(1), 13–39 (2007)Google Scholar
  3. 3.
    Atomiq, G.S.: Folksonomy: social classification. http://atomiq.org/archives/2004/08/folksonomysocialclassification.html. Accessed August 2004
  4. 4.
    Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using social annotations. In: Proceedings of WWW2007, pp. 501–510. ACM, New York (2007)Google Scholar
  5. 5.
    Barnard, K., Duygulu, P., Forsyth, D., De Freitas, N., Blei, D.M., Jordan, M.I.: Matching words and pictures. J. Mach. Learn. Res. 3, 1107–1135 (2003)MATHGoogle Scholar
  6. 6.
    Bast, H., Dupret, G., Majumdar, D., Piwowarski, B.: Discovering a term taxonomy from term similarities using principal component analysis. In: Semantic Web Mining. Springer, Berlin/New York (2006)Google Scholar
  7. 7.
    Blohm, S., Cimiano, P.: Using the web to reduce data sparseness in pattern-based information extraction. In: PKDD. Lecture Notes in Computer Science, vol. 4702, pp. 18–29. Springer, Berlin/New York (2007)Google Scholar
  8. 8.
    Brezeale, D., Cook, D.J.: Automatic video classification: a survey of the literature. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(3), 416–430 (2008)CrossRefGoogle Scholar
  9. 9.
    Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic relatedness. Comput. Linguist. 32(1), 13–47 (2006)MATHCrossRefGoogle Scholar
  10. 10.
    Carneiro, G., Chan, A.B., Moreno, P.J., Vasconcelos, N.: Supervised learning of semantic classes for image annotation and retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 394–410 (2007)CrossRefGoogle Scholar
  11. 11.
    Chandramouli, K., Kliegr, T., Svatek, V., Izquierdo, E.: Towards semantic tagging in collaborative environments. In: 16th International Conference on Digital Signal Processing 2009, pp. 1–6. IEEE, Piscataway (2009)Google Scholar
  12. 12.
    Chang, E., Goh, K., Sychay, G., Wu, G.: Cbsa: content-based soft annotation for multimodal image retrieval using bayes point machines. IEEE Trans. Circuits Syst. Video Technol. 13(1), 26–38 (2003)CrossRefGoogle Scholar
  13. 13.
    Cimiano, P., Voelker, J.: Text2onto – a framework for ontology learning and data-driven change discovery. In: NLDB 2005, Alicante (2005)Google Scholar
  14. 14.
    Cucerzan, S.: Large-scale named entity disambiguation based on wikipedia data. In: Proceedings of Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Prague, pp. 708–716 (2007)Google Scholar
  15. 15.
    Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Query expansion by mining user logs. IEEE Trans. Knowl. Data Eng. 15(4), 829–839 (2003)CrossRefGoogle Scholar
  16. 16.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. ACM Comput. Surv. (CSUR) 40(2), 5 (2008)Google Scholar
  17. 17.
    Deerwester, D.S., Fumas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. ACM Trans. Inf. Syst. (2000)Google Scholar
  18. 18.
    Ding, G., Bai, S., Wang, B.: Local co-occurrence based query expansion for information retrieval. J. Chin. Inf. Process. 20, 84–91 (2006)Google Scholar
  19. 19.
    Duygulu, P., Barnard, K., de Freitas, J., Forsyth, D.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: ECCV 2002, Copenhagen, pp. 349–354 (2002)Google Scholar
  20. 20.
    Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT, Cambridge/London/England (1998)MATHGoogle Scholar
  21. 21.
    Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-specific keyphrase extraction. In: Proceeding of 16th International Joint Conference on Artificial Intelligence, Stockholm, pp. 668–673 (1999)Google Scholar
  22. 22.
    Gabrilovich, E., Markovich, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 07), Hyderabad (2007)Google Scholar
  23. 23.
    Gao, Y., Fan, J., Xue, X., Jain, R.: Automatic image annotation by incorporating feature hierarchy and boosting to scale up svm classifiers. In: Proceedings of the 14th Annual ACM International Conference on Multimedia, pp. 901–910. ACM, New York (2006)Google Scholar
  24. 24.
    Gong, Z., Cheang, C.W., Hou, U.L.: Web query expansion by wordnet. In: DEXA 2005, Copenhagen. LNCS, vol. 3588, pp. 166–175 (2002)Google Scholar
  25. 25.
    Grootjen, T.P.: Conceptual query expansion. Data Knowl. Eng. 56, 174–193 (2005)CrossRefGoogle Scholar
  26. 26.
    Guillaumin, M., Mensink, T., Verbeek, J.: TagProp: discriminative metric learning in nearest neighbor models for image auto-annotation. In: ICCV, Kyoto, pp. 309–316 (2009)Google Scholar
  27. 27.
    Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Fourteenth International Conference on Computational Linguistics, Nantes, pp. 539–545 (1992)Google Scholar
  28. 28.
    Hernández-Aranda, D., Granados, R., Cigarran, J., Rodrigo, A., Fresno, V., Garcıa-Serrano, A.: UNED at mediaeval 2010: exploiting text metadata for automatic video tagging. In: MediaEval 2010 Workshop, Pisa (2010)Google Scholar
  29. 29.
    Heymann, P., Ramage, D., Garcia-Molina, H.: Social tag prediction. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 531–538. ACM, New York (2008)Google Scholar
  30. 30.
    Hoeber, O., Yang, X.-D., Yao, Y.: Conceptual query expansion. In: Proceedings of the Atlantic Web Intelligence Conference, Lodz (2005)Google Scholar
  31. 31.
    Hotho, A., Jaschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: search and ranking. In: Proceedings of ESWC 2006, Budva, pp. 411–426 (2006)Google Scholar
  32. 32.
  33. 33.
    Kliegr, T.: Entity classification by bag of wikipedia articles. In: Proceedings of the 3rd Workshop on Ph.D. Students in Information and Knowledge Management, pp. 67–74. ACM, New York (2010)Google Scholar
  34. 34.
    Kliegr, T., Chandramouli, K., Nemrava, J., Svátek, V., Izquierdo, E.: Combining captions and visual analysis for image concept classification. In: MDM/KDD’08: Proceedings of the 9th International Workshop on Multimedia Data Mining. ACM, New York (2008)Google Scholar
  35. 35.
    Larson, M., Soleymani, M., Serdyukov, P., Murdock, V., Jones, G. (eds.): In: Working Notes Proceedings of the MediaEval 2010 Workshop, Pisa (2010)Google Scholar
  36. 36.
    Li, D., Cai, D.: A study of query extension based on query log analysis. In: Proceedings of the Fourth National Student Conference on Computational Linguistics (SWCL-2008) (2008)Google Scholar
  37. 37.
    Li, Q., Lu, S.C.Y.: Collaborative tagging applications and approaches. IEEE Multimed. 15(3), pp. 14–21 (2008)CrossRefGoogle Scholar
  38. 38.
    Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. In: MM, Santa Barbara, pp. 911–920 (2006)Google Scholar
  39. 39.
    Li, X., Snoek, C.G.M., Worring, M.: Learning tag relevance by neighbor voting for social image retrieval. In: MIR, Vancouver, pp. 180–187 (2008)Google Scholar
  40. 40.
    Li, X., Snoek, C.G.M., Worring, M.: Annotating images by harnessing worldwide user-tagged photos. In: ICASSP, Taipei, pp. 3717–3720 (2009)Google Scholar
  41. 41.
    Lindstaedt, S., Mörzinger, R., Sorschag, R., Pammer, V., Thallinger, G.: Automatic image annotation using visual content and folksonomies. Multimed. Tools Appl. 42(1), 97–113 (2009)CrossRefGoogle Scholar
  42. 42.
    Liu, X., Bruce Croft, W.: Cluster-based retrieval using language models. In: The 2004 ACM 1-58113-881-4/04/0007, 25–29 July 2004Google Scholar
  43. 43.
    Liu, S., Liu, F., Yu, C., Meng, W.: An effective approach to document retrieval via utilizing wordNet and recognizing phrases. In: Proceedings of the 27th Annual International ACM/SIGIR Conference on Research and Development in Information Retrieval, Sheffield (2004)Google Scholar
  44. 44.
    Liu, J., Wang, B., Li, M., Li, Z., Ma, W.Y., Lu, H., Ma, S.: Dual cross-media relevance model for image annotation. In: MM, Augsburg, pp. 605–614 (2007)Google Scholar
  45. 45.
    Mandel, M., Ellis, D.: A web-based game for collecting music metadata. In: ISMIR, Vienna (2007)Google Scholar
  46. 46.
    Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT, Cambridge (1999)MATHGoogle Scholar
  47. 47.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: Position paper, tagging, taxonomy, flickr, article, toRead. In: Proceedings of the 17th Conference on Hypertext and Hypermedia, Odense, pp. 31–40. ACM, New York (2006)Google Scholar
  48. 48.
    Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In: Advancement of Artificial Intelligence (2008)Google Scholar
  49. 49.
    Mittal, N., Nayak, R., Govil, M.C., Jain, K.C.: Dynamic query expansion for efficient information retrieval. In: The Proceedings of International Conference on Web Information Systems and Mining, Sanya (2010)Google Scholar
  50. 50.
    Moehrmann, J., Bernstein, S., Schlegel, T., Werner, G., Heidemann, G.: Improving the usability of hierarchical representations for interactively labeling large image data sets. In: Jacko, J. (ed.) Human-Computer Interaction, Design and Development Approaches. Lecture Notes in Computer Science, vol. 6761, pp. 618–627. Springer, Berlin/New York (2011)CrossRefGoogle Scholar
  51. 51.
    Monay, F., Gatica-Perez, D.: On image auto-annotation with latent space models. In: MM, Berkeley, pp. 275–278 (2003)Google Scholar
  52. 52.
    Nemeth, Y., Shapira, B., Taeib-Maimon, M.: Evaluation of the real and perceived value of automatic and interactive query expansion. In: SIGIR ’04, Sheffield, pp. 526–527 (2006)Google Scholar
  53. 53.
    Nemrava, J.: Refining search queries using wordnet glosses. In: EKAW 2006, Podebrady, pp. 2–6 (2006)Google Scholar
  54. 54.
    Paltoglou, G.: A study of information retrieval weighting schemes for sentiment analysis. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, vol. 11–16, pp. 1386–1395 (2010)Google Scholar
  55. 55.
    Qiu, Y., Frei, H.-P.: Concept based query expansion. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 160–169. ACM, Pittsburgh (1993)Google Scholar
  56. 56.
    Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp. 81–90. ACM, New York (2010)Google Scholar
  57. 57.
    Richardson, R., Smeaton, A.F.: Using wordNet in a knowledge-based approach to information retrieval. In: Proceedings of the BCS-IRSG Colloquium, Crewe (1995)Google Scholar
  58. 58.
    San Pedro, J., Siersdorfer, S., Sanderson, M.: Content redundancy in YouTube and its application to video Tagging. ACM Trans. Inf. Syst. 29(3), 13:1–13:31 (2011)Google Scholar
  59. 59.
    Seneviratne, L., Izquierdo, E.: An interactive framework for image annotation through gaming. In: MIR, Philadelphia, pp. 517–526 (2010)Google Scholar
  60. 60.
    Shapira, B., Taieb-Maimon, M., Nemeth, Y.: Subjective and objective evaluation of interactive and automatic query expansion. In: Online Information Review, pp. 374–390. Emerald, Bradford (2005)Google Scholar
  61. 61.
    Siersdorfer, S., San Pedro, J., Sanderson, M.: Automatic video tagging using content redundancy. In: SIGIR 2009, Boston, pp. 395–402 (2009)Google Scholar
  62. 62.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  63. 63.
    Snoek, C.G.M., Worring, M.: Concept-based video retrieval. Found. Trends Inf. Retr. 2(4), 215–322 (2008)CrossRefGoogle Scholar
  64. 64.
    Snow, R., Jurafsky, D., Ng, A.: Learning syntactic patterns for automatic hypernym discovery. In: NIPS. Morgan Kaufmann, San Mateo (2005)Google Scholar
  65. 65.
    Strube, M., Ponzetto, S.P.: WikiRelate! computing semantic relatedness using wikipedia. In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI-06), Boston, pp. 1419–1424 (2006)Google Scholar
  66. 66.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW 2007: 16th International World Wide Web Conference. ACM, New York (2007)Google Scholar
  67. 67.
    Sun, A., Bhowmick, S.S.: Image tag clarity: in search of visual-representative tags for social images. In: WSM, Beijing, pp. 19–26 (2009)Google Scholar
  68. 68.
    Tingle, D., Kim, Y.E., Turnbull, D.: Exploring automatic music annotation with acoustically-objective tags. In: MIR, Philadelphia, pp. 55–62 (2010)Google Scholar
  69. 69.
    Turnbull, D., Liu, R., Barrington, L., Lanckriet, G.: A game-based approach for collecting semantic annotations of music. In: ISMIR, Vienna (2007)Google Scholar
  70. 70.
    Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 2(16), 467–476 (2008)CrossRefGoogle Scholar
  71. 71.
    Ulges, A., Schulze, C., Koch, M., Breuel, T.M.: Learning automatic concept detectors from online video. Comput. Vis. Image Underst. 114(4), 429–438 (2010)CrossRefGoogle Scholar
  72. 72.
    Ulges, A., Worring, M., Breuel, T.: Learning visual contexts for image annotation from flickr groups. IEEE Trans. Multimed. 13(2), 330–341 (2011)CrossRefGoogle Scholar
  73. 73.
    Varelas, G., Voutsakis, E., Raftopoulou, P.: Semantic similarity methods in wordNet and their application to information retrieval on the web. In: 7th ACM International Workshop on Web Information and Data Management, Bremen (2005)Google Scholar
  74. 74.
    von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: CHI, Vienna, pp. 319–326 (2004)Google Scholar
  75. 75.
    Wang, M., Yang, K., Hua, X.S., Zhang, H.J.: Visual tag dictionary: interpreting tags with visual words. In: WSCM, pp. 1–8 (2009)Google Scholar
  76. 76.
    Wang, Z., Li, X., Xu, R.: Multi-keywords query expansion with OLCA based concept tree pruning. Comput. Sci. 37(4), 132 (2010)MathSciNetGoogle Scholar
  77. 77.
    Wartena, C.: Using a divergence model for mediaeval tagging task. In: MediaEval 2010 Workshop, Pisa (2010)Google Scholar
  78. 78.
    Wen, N.J., Zhang, H.J.: Clustering user queries of a search engine. In: Proceedings of the 10th International World Wide Web Conference (WWW10), Hong Kong (2001)Google Scholar
  79. 79.
    Wen, J., Cui, H., Li, M.: A statistical query expansion model based on query logs. J. Softw. (2003)Google Scholar
  80. 80.
    Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Proceedings of WWW06, Edinburgh, pp. 417–426 (2006)Google Scholar
  81. 81.
    Wu, L., Yang, L., Hua, X.S., Yu, N.: Learning to tag. In: WWW, Madrid, pp. 361–370 (2009)Google Scholar
  82. 82.
    Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: Proceedings of ACM SIGIR, Singapore, pp. 155–162 (2008)Google Scholar
  83. 83.
    Yan, X., Huang, M., Zhang, S.: Query expansion of pseudo relevance feedback based on matrix-weighted association rules mining. Inst. Softw. Chin. Acad. Sci. 20, 1854–1865 (2009)Google Scholar
  84. 84.
    Zhang, J., Deng, B., Li, X.: Concept based query expansion using wordNet. In: AST ’09 Proceedings of the 2009 International e-Conference on Advanced Science and Technology, Daejeon, pp 52–55 (2009)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Tomas Piatrik
    • 1
  • Qianni Zhang
    • 1
  • Xavier Sevillano
    • 2
  • Ebroul Izquierdo
    • 1
  1. 1.School of EE and CSQueen Mary University LondonLondonUK
  2. 2.La Salle - Universitat Ramon LullBarcelonaSpain

Personalised recommendations