Advertisement

Detecting Multimedia Contents of Social Events in Social Networks

  • Mohamad Rabbath
  • Susanne Boll
Chapter
Part of the Computer Communications and Networks book series (CCN)

Abstract

Friends visit many social events together, take photos of each other and upload them in several accounts in different types of social media such as Flickr or Facebook. In this chapter we define the different types of events in social media and introduce two approaches in the state of the art of detecting the media content of an event. The first is an ontology-based approach where the metadata is basically used to obtain the content of a well-defined event and the visual features are used to prune the results to finally get the illustrative elements. The second approach exploits a mixture of features (visual, social, structural and metadata) that we also explain in this chapter and fuses them in a probabilistic model to link the media elements of different users and albums to their representative event. We discuss the advantage and disadvantage of each approach and the cases of using each.

References

  1. 1.
  2. 2.
    Trad, M.R., Joly, A., Boujemaa N.: In: ICMR, Trento, p. 53 (2011)Google Scholar
  3. 3.
    Westermann, U., Jain, R.: Toward a common event model for multimedia applications. IEEE Multimed. 14(1), 19 (2007). doi:http://dx.doi.org/10.1109/MMUL.2007.23 Google Scholar
  4. 4.
    Shevade, B., Sundaram, H., Xie, L.: In: Proceedings of the 7th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL), pp. 127–134. ACM, New York (2007). doi:http://doi.acm.org/10.1145/1255175.1255200
  5. 5.
    Mei, T., Wang, B., Sheng Hua, X., qin Zhou, H., Li, S.: Multimedia and expo. IEEE Int. Conf. 0, 1757 (2006). doi:http://doi.ieeecomputersociety.org/10.1109/ICME.2006.262891
  6. 6.
    Platt, J.C., Czerwinski, M., Field, B.A.: Phototoc: automatic clustering for browsing personal photographs. Technical report MSR-TR-2002-17, Microsoft research (2002). citeseer.ist.psu.edu/article/platt02phototoc.htmlGoogle Scholar
  7. 7.
    Negoescu, R.A., Gatica-Perez, D.: In: Proceedings of International Conference on Image and Video Retrieval (CIVR), pp. 417–426. ACM, New York (2008). doi:http://doi.acm.org/10.1145/1386352.1386406
  8. 8.
    Liu, X., Troncy, R., Huet, B.: In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR ’11, Trento, pp. 58:1–58:8 (2011). doi:http://doi.acm.org/10.1145/1991996.1992054, http://doi.acm.org/10.1145/1991996.1992054
  9. 9.
    Troncy, R., Malocha, B., Fialho, A.T.S.: In: Proceedings of the 6th International Conference on Semantic Systems, I-SEMANTICS ’10, pp. 42:1–42:4. ACM, New York (2010). doi:http://doi.acm.org/10.1145/1839707.1839759, http://doi.acm.org/10.1145/1839707.1839759
  10. 10.
    Gkalelis, N., Mezaris, V., Kompatsiaris, I.: In: ICSC, Pittsburgh, pp. 79–84. IEEE (2010). http://dblp.uni-trier.de/db/conf/semco/icsc2010.html#GkalelisMK10
  11. 11.
    Rabbath, M., Sandhaus, P., Boll, S.: In: Proceedings of the ACM International Conference on Multimedia Retrieval, ICMR ’12, Hong Kong. ACM (2012)Google Scholar
  12. 12.
    Sakaki, T., Okazaki, M., Matsuo, Y.: In: Proceedings of the 19th International Conference on World wide web, WWW ’10, pp. 851–860. ACM, New York (2010). doi:10.1145/1772690.1772777, http://doi.acm.org/10.1145/1772690.1772777
  13. 13.
    Rabbath, M., Sandhaus, P., Boll, S.: ACM Trans. Multimed. Comput. Commun. Appl. 7S, 27:1 (2011). doi:http://doi.acm.org/10.1145/2037676.2037684, http://doi.acm.org/10.1145/2037676.2037684
  14. 14.
    Pigeau, A., Gelgon, M.: J. Vis. Commun. Image Represent. 15(3), 425 (2004). doi:10.1016/j.jvcir.2004.04.002, http://dx.doi.org/10.1016/j.jvcir.2004.04.002
  15. 15.
    Zhao, M., Liu, S.: In: Proceedins of International Conference on Image and Video Retrieval (CIVR), Tempe, pp. 163–172 (2006)Google Scholar
  16. 16.
    Kazuya, S., Yujiro, N., Naoko, N., Noboru, B.: In: Proceedings of the ACM International Conference on Multimedia Retrieval, ICMR ’12, Hong Kong. ACM (2012)Google Scholar
  17. 17.
    Strong, G., Gong, M.: In: Proceedings of the ACM International Conference on Image and Video Retrieval (2009), CIVR ’09, Santorini Island, pp. 3:1–3:8. doi:http://doi.acm.org/10.1145/1646396.1646401, http://doi.acm.org/10.1145/1646396.1646401
  18. 18.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91 (2004). doi:10.1023/B:VISI.0000029664.99615.94, http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94 Google Scholar
  19. 19.
    Redi, M., Merialdo, B.: In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval, ICMR ’11, Trento, pp. 39:1–39:8 (2011). doi:http://doi.acm.org/10.1145/1991996.1992035, http://doi.acm.org/10.1145/1991996.1992035
  20. 20.
    Viola, P.A., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137 (2004)CrossRefGoogle Scholar
  21. 21.
    Gentile, J.E., Bowyer, K.W., Flynn, P.J.: In: 2008 IEEE Second International Conference on Biometrics: Theory, Applications and Systems, pp. 1–6. IEEE, Piscataway (2008). doi:10.1109/BTAS.2008.4699376, http://dx.doi.org/10.1109/BTAS.2008.4699376
  22. 22.
    Stone, Z., Zickler, T., Darrell, T.: Proc. IEEE 98(8), 1408 (2010)CrossRefGoogle Scholar
  23. 23.
    Negoescu, R.A., Gatica-Perez, D.: In: Proceedings of the CIVR, Niagara Falls, pp. 417–426 (2008)Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.OFFIS – Institute for Information TechnologyOldenburgGermany
  2. 2.University of OldenburgOldenburgGermany

Personalised recommendations