Image and Video-Based Artistic Stylisation pp 45-61

Part of the Computational Imaging and Vision book series (CIVI, volume 42) | Cite as

Halftoning and Stippling

Chapter

Abstract

One important origin of non-photorealistic computer graphics comes from printing technology. Halftoning is a reproduction technique for photography in printing. The continuous tones of the images are represented by fulltone dots of varying size, shape, and density. While printing technology brought this to perfection over time, computer graphics researchers developed methods that modified this process for artistic purposes. For purposes of halftoning, dots are distributed in repetitive patterns. Stippling, an artistic illustration technique, distributes them in a random but expressive way. Illustrators aim at representing tone and texture of an object by such patterns. Interestingly, the distributions can be described mathematically and a simple optimization scheme allows computers to imitate the artistic process quite well. The method can be extended towards distributing other shapes. In this case the optimization is extended to move and rotate the objects. This allows users not only to create other forms of illustrations but also to generate mosaics.

References

  1. 1.
    Deussen, O., Hiller, S., van Overveld, K., Strothotte, T.: Floating points: a method for computing stipple drawings. Comput. Graph. Forum 19(4), 40–51 (2000). doi:10.1111/1467-8659.00396 Google Scholar
  2. 2.
    Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations. SIAM Rev. 41(4), 637–676 (1999). doi:10.1137/S0036144599352836 MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Floyd, R., Steinberg, L.: An adaptive algorithm for spatial grey scale. Proc. Soc. Inf. Disp. 17(2), 75–77 (1976) Google Scholar
  4. 4.
    Fritzsche, L.P., Hellwig, H., Hiller, S., Deussen, O.: Interactive design of authentic looking mosaics using Voronoi structures. In: Proc. 2nd International Symposium on Voronoi Diagrams in Science and Engineering 2005, pp. 1–11 (2005) Google Scholar
  5. 5.
    Gersho, A.: Asymptotically optimal block quantization. IEEE Trans. Inf. Theory 25(4), 373–380 (1979). doi:10.1109/TIT.1979.1056067 MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kim, D., Son, M., Lee, Y., Kang, H., Lee, S.: Feature-guided image stippling. Comput. Graph. Forum 27(4), 1209–1216 (2008). doi:10.1111/j.1467-8659.2008.01259.x CrossRefGoogle Scholar
  7. 7.
    Kim, S., Maciejewski, R., Isenberg, T., Andrews, W.M., Chen, W., Sousa, M.C., Ebert, D.S.: Stippling by example. In: Proc. NPAR, pp. 41–50. ACM, New York (2009). doi:10.1145/1572614.1572622 CrossRefGoogle Scholar
  8. 8.
    Kim, S., Woo, I., Maciejewski, R., Ebert, D.S.: Automated hedcut illustration using isophotes. In: Proc. Smart Graphics, pp. 172–183. Springer, Berlin (2010). doi:10.1007/978-3-642-13544-6_17 CrossRefGoogle Scholar
  9. 9.
    Kopf, J., Cohen-Or, D., Deussen, O., Lischinski, D.: Recursive Wang tiles for real-time blue noise. ACM Trans. Graph. 25(3), 509–518 (2006). doi:10.1145/1141911.1141916 CrossRefGoogle Scholar
  10. 10.
    Li, H., Mould, D.: Structure-preserving stippling by priority-based error diffusion. In: Proc. Graphics Interface, pp. 127–134. Canadian Human-Computer Communications Society, School of Computer Science, University of Waterloo, Waterloo (2011) Google Scholar
  11. 11.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). doi:10.1109/TIT.1982.1056489 MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Maciejewski, R., Isenberg, T., Andrews, W.M., Ebert, D.S., Sousa, M.C., Chen, W.: Measuring stipple aesthetics in hand-drawn and computer-generated images. IEEE Comput. Graph. Appl. 28(2), 62–74 (2008). doi:10.1109/MCG.2008.35 CrossRefGoogle Scholar
  13. 13.
    Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Example-based stippling using a scale-dependent grayscale process. In: Proc. NPAR, pp. 51–61. ACM, New York (2010). doi:10.1145/1809939.1809946 Google Scholar
  14. 14.
    Martín, D., Arroyo, G., Luzón, M.V., Isenberg, T.: Scale-dependent and example-based stippling. Comput. Graph. 35(1), 160–174 (2011). doi:10.1016/j.cag.2010.11.006 CrossRefGoogle Scholar
  15. 15.
    Mould, D.: Stipple placement using distance in a weighted graph. In: Proc. CAe, pp. 45–52. Eurographics Association, Goslar (2007). doi:10.2312/COMPAESTH/COMPAESTH07/045-052 Google Scholar
  16. 16.
    Newman, D.J.: The hexagon theorem. IEEE Trans. Inf. Theory 28(2), 137–138 (1982). doi:10.1109/TIT.1982.1056492 MATHCrossRefGoogle Scholar
  17. 17.
    Secord, A.: Weighted Voronoi stippling. In: Proc. NPAR, pp. 37–43. ACM, New York (2002). doi:10.1145/508530.508537 Google Scholar
  18. 18.
    Smith, J.: Recent developments in numerical integration. J. Dyn. Syst. Meas. Control 96(1), 61–70 (1974). doi:10.1115/1.3426777 CrossRefGoogle Scholar
  19. 19.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1980) Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Dept. of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
  2. 2.INRIA SaclayOrsayFrance

Personalised recommendations