Computer-Assisted Repurposing of Existing Animations

  • Daniel Sýkora
  • John Dingliana
Part of the Computational Imaging and Vision book series (CIVI, volume 42)


Despite the recent proliferation of modern 3D computer-generated imagery, the classical 2D hand-drawn style retains an important role in the field of cartoon animation. Although existing 3D modelling and animation tools open a vast pool of new possibilities, they still suffer from lack of expressiveness. This chapter presents a selection of advanced image processing techniques, the aim of which is to build a bridge between hand-drawn 2D animation and fully computer-assisted approaches. Tailored for usage in a real production pipeline, these techniques enable various complex manipulation and enhancement tasks such as colorization, 2D-to-3D conversion, example-based synthesis or rendering similar to 3D computer-generated imagery to be done with minimal user effort.


Image Registration Deformable Image Registration Depth Discontinuity Block Match Algorithm Absolute Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Marie Curie action ERG, No. PERG07-GA-2010-268216 and partially by the Technology Agency of the Czech Republic under the project TE01010415 (V3C—Visual Computing Competence Center). Hand-drawn images used in this chapter are courtesy of UPP & DMP, Anifilm, Lukáš Vlček, and Ondřej Sýkora.


  1. 1.
    Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: ACM SIGGRAPH Conference Proceedings, pp. 157–164 (2000) Google Scholar
  2. 2.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(24), 509–522 (2002) CrossRefGoogle Scholar
  3. 3.
    Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006) CrossRefGoogle Scholar
  4. 4.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004) CrossRefGoogle Scholar
  5. 5.
    Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–655 (1998) Google Scholar
  6. 6.
    Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiway cuts. In: Proceedings of ACM Symposium on Theory of Computing, pp. 241–251 (1992) Google Scholar
  7. 7.
    Ecker, A., Jepson, A.D.: Polynomial shape from shading. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 145–152 (2010) Google Scholar
  8. 8.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Tech. Rep. TR2004-1963, Cornell University (2004) Google Scholar
  9. 9.
    Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008) CrossRefGoogle Scholar
  10. 10.
    Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006) CrossRefGoogle Scholar
  11. 11.
    Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24(3), 1134–1141 (2005) CrossRefGoogle Scholar
  12. 12.
    Jamriška, O., Sýkora, D., Hornung, A.: Cache-efficient graph cuts on structured grids. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3673–3680 (2012) Google Scholar
  13. 13.
    Jeschke, S., Cline, D., Wonka, P.: A GPU Laplacian solver for diffusion curves and Poisson image editing. ACM Trans. Graph. 28(5), 116 (2009) Google Scholar
  14. 14.
    Johnston, S.F.: Lumo: illumination for cel animation. In: Proceedings of International Symposium on Non-photorealistic Animation and Rendering, pp. 45–52 (2002) CrossRefGoogle Scholar
  15. 15.
    Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962) zbMATHCrossRefGoogle Scholar
  16. 16.
    Kaneko, T., Takahei, T., Inami, M., Kawakami, N., Yanagida, Y., Maeda, T., Tachi, S.: Detailed shape representation with parallax mapping. In: Proceedings of International Conference on Artificial Reality and Telexistence, pp. 205–208 (2001) Google Scholar
  17. 17.
    Koenderink, J.J.: Pictorial relief. Philos. Trans. R. Soc. Lond. 356(1740), 1071–1086 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L.: Pictorial surface attitude and local depth comparisons. Percept. Psychophys. 58(2), 163–173 (1996) CrossRefGoogle Scholar
  19. 19.
    Langer, M.S., Buelthoff, H.H.: Depth discrimination from shading under diffuse lighting. Perception 29(6), 649–660 (2000) CrossRefGoogle Scholar
  20. 20.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004) CrossRefGoogle Scholar
  21. 21.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004) CrossRefGoogle Scholar
  22. 22.
    Luft, T., Colditz, C., Deussen, O.: Image enhancement by unsharp masking the depth buffer. ACM Trans. Graph. 25(3), 1206–1213 (2006) CrossRefGoogle Scholar
  23. 23.
    McCann, J., Pollard, N.S.: Local layering. ACM Trans. Graph. 28(3), 84 (2009) CrossRefGoogle Scholar
  24. 24.
    Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., Salesin, D.: Diffusion curves: a vector representation for smooth-shaded images. ACM Trans. Graph. 27(3), 92 (2008) CrossRefGoogle Scholar
  25. 25.
    Pao, H.K., Geiger, D., Rubin, N.: Measuring convexity for figure/ground separation. In: Proceedings of IEEE International Conference on Computer Vision, pp. 948–955 (1999) CrossRefGoogle Scholar
  26. 26.
    Potts, R.: Some generalized order-disorder transformation. In: Proceedings of Cambridge Philosophical Society, vol. 48, pp. 106–109 (1952) Google Scholar
  27. 27.
    Qu, Y., Wong, T.T., Heng, P.A.: Manga colorization. ACM Trans. Graph. 25(3), 1214–1220 (2006) CrossRefGoogle Scholar
  28. 28.
    Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. ACM Trans. Graph. 25(3), 533–540 (2006) CrossRefGoogle Scholar
  29. 29.
    Shekhovtsov, A., Kovtun, I., Hlaváč, V.: Efficient MRF deformation model for non-rigid image matching. Comput. Vis. Image Underst. 112(1), 91–99 (2008) CrossRefGoogle Scholar
  30. 30.
    Sýkora, D., Buriánek, J., Žára, J.: Colorization of black-and-white cartoons. Image Vis. Comput. 23(9), 767–782 (2005) CrossRefGoogle Scholar
  31. 31.
    Sýkora, D., Buriánek, J., Žára, J.: Sketching cartoons by example. In: Proceedings of Eurographics Workshop on Sketch-Based Interfaces and Modeling, pp. 27–34 (2005) Google Scholar
  32. 32.
    Sýkora, D., Dingliana, J., Collins, S.: As-rigid-as-possible image registration for hand-drawn cartoon animations. In: Proceedings of International Symposium on Non-photorealistic Animation and Rendering, pp. 25–33 (2009) Google Scholar
  33. 33.
    Sýkora, D., Dingliana, J., Collins, S.: LazyBrush: flexible painting tool for hand-drawn cartoons. Comput. Graph. Forum 28(2), 599–608 (2009) CrossRefGoogle Scholar
  34. 34.
    Sýkora, D., Sedlacek, D., Jinchao, S., Dingliana, J., Collins, S.: Adding depth to cartoons using sparse depth (in)equalities. Comput. Graph. Forum 29(2), 615–623 (2010) CrossRefGoogle Scholar
  35. 35.
    Sýkora, D., Ben-Chen, M., Čadík, M., Whited, B., Simmons, M.: TexToons: practical texture mapping for hand-drawn cartoon animations. In: Proceedings of International Symposium on Non-photorealistic Animation and Rendering, pp. 75–83 (2011) Google Scholar
  36. 36.
    Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Netw. 19(9), 1395–1407 (2006) zbMATHCrossRefGoogle Scholar
  37. 37.
    Wang, Y., Xu, K., Xiong, Y., Cheng, Z.Q.: 2D shape deformation based on rigid square matching. Comput. Animat. Virtual Worlds 19(3–4), 411–420 (2008) CrossRefGoogle Scholar
  38. 38.
    Winnemöller, H., Orzan, A., Boissieux, L., Thollot, J.: Texture design and draping in 2D images. Comput. Graph. Forum 28(4), 1091–1099 (2009) CrossRefGoogle Scholar
  39. 39.
    Yarbus, A.L.: Eye Movements and Vision. Plenum, New York (1967) Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.FEE, DCGICTU in PraguePraha 2Czech Republic
  2. 2.Trinity College DublinDublin 2Ireland

Personalised recommendations