Non-photorealistic Rendering with Reduced Colour Palettes

  • Yu-Kun Lai
  • Paul L. Rosin
Part of the Computational Imaging and Vision book series (CIVI, volume 42)


In contrast to photorealistic rendering, where richer colours are likely to be preferred, non-photorealistic rendering can often benefit from some abstraction, and colour palette reduction is one direction. By using a small number of carefully selected colours the overall tonal distribution can be well expressed with less visual clutter. This is also essential to simulate certain art forms, such as cartoons, comics, paper-cuts, woodblock printing, etc. that naturally prefer or require reduced palettes. In this chapter we will summarise major techniques used in colour palette reduction, such as region segmentation, thresholding and colour palette selection. Most approaches consider images as input and generate stylised image renderings while some work also considers video stylisation, in which case temporal coherence is essential. We finish this chapter with some discussions of potential future directions.


Temporal Coherence Bilateral Filter Colour Palette Energy Minimisation Problem Detail Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwala, A., Hertzmann, A., Salesin, D., Seitz, S.M.: Keyframe-based tracking for rotoscoping and animation. ACM Trans. Graph. 23(3), 584–591 (2004) CrossRefGoogle Scholar
  2. 2.
    Barash, D., Comaniciu, D.: A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift. Image Vis. Comput. 22(1), 73–81 (2004) CrossRefGoogle Scholar
  3. 3.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimisation in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26(9), 1124–1137 (2004) CrossRefGoogle Scholar
  4. 4.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986) CrossRefGoogle Scholar
  5. 5.
    Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Xu, Y.Q.: Color harmonization. ACM Trans. Graph. 25(3), 624–630 (2006) CrossRefGoogle Scholar
  6. 6.
    Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002) CrossRefGoogle Scholar
  7. 7.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 23(6), 681–685 (2001) CrossRefGoogle Scholar
  8. 8.
    DeCarlo, D., Santella, A.: Stylization and abstraction of photographs. ACM Trans. Graph. 21(3), 769–776 (2002) CrossRefGoogle Scholar
  9. 9.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004) CrossRefGoogle Scholar
  10. 10.
    Gooch, B., Reinhard, E., Gooch, A.: Human facial illustrations: creation and psychophysical evaluation. ACM Trans. Graph. 23(1), 27–44 (2004) CrossRefGoogle Scholar
  11. 11.
    Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.: Color2Gray: salience-preserving color removal. ACM Trans. Graph. 24(3), 634–639 (2005) CrossRefGoogle Scholar
  12. 12.
    Heckbert, P.: Color image quantization for frame buffer display. In: Proc. ACM SIGGRAPH, pp. 297–307 (1982) Google Scholar
  13. 13.
    Kang, H., Lee, S., Chui, C.K.: Coherent line drawing. In: ACM Symp. Non-photorealistic Animation and Rendering, pp. 43–50 (2007) Google Scholar
  14. 14.
    Kang, H., Lee, S., Chui, C.K.: Flow-based image abstraction. IEEE Trans. Vis. Comput. Graph. 15(1), 62–76 (2009) CrossRefGoogle Scholar
  15. 15.
    Kyprianidis, J.E.: Image and video abstraction by multi-scale anisotropic Kuwahara filtering. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Non-Photorealistic Animation and Rendering, pp. 55–64 (2011) CrossRefGoogle Scholar
  16. 16.
    Kyprianidis, J.E., Döllner, J.: Image abstraction by structure adaptive filtering. In: EG UK Theory and Practice of Computer Graphics, pp. 51–58 (2008) Google Scholar
  17. 17.
    Kyprianidis, J.E., Kang, H., Döllner, J.: Image and video abstraction by anisotropic Kuwahara filtering. Comput. Graph. Forum 28(7), 1955–1963 (2009) CrossRefGoogle Scholar
  18. 18.
    Lopez-Moreno, J., Jimenez, J., Hadap, S., Reinhard, E., Anjyo, K., Gutierrez, D.: Stylized depiction of images based on depth perception. In: ACM Symp. Non-photorealistic Animation and Rendering, pp. 109–118. ACM, New York (2010) Google Scholar
  19. 19.
    Maharik, R., Bessmeltsev, M., Sheffer, A., Shamir, A., Carr, N.: Digital micrography. ACM Trans. Graph. 30(4), 100 (2011) CrossRefGoogle Scholar
  20. 20.
    Meng, M., Zhao, M., Zhu, S.C.: Artistic paper-cut of human portraits. In: 18th Int. Conf. on Multimedia, pp. 931–934 (2010) Google Scholar
  21. 21.
    Mould, D.: A stained glass image filter. In: Eurographics Workshop on Rendering Techniques, pp. 20–25 (2003) Google Scholar
  22. 22.
    Olsen, S.C., Gooch, B.: Image simplification and vectorization. In: ACM Symp. Non-photorealistic Animation and Rendering, pp. 65–74 (2011) Google Scholar
  23. 23.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979) CrossRefGoogle Scholar
  24. 24.
    Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993) Google Scholar
  25. 25.
    Rosin, P.L., Lai, Y.K.: Towards artistic minimal rendering. In: ACM Symp. Non-photorealistic Animation and Rendering, pp. 119–127 (2010) Google Scholar
  26. 26.
    Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004) CrossRefGoogle Scholar
  27. 27.
    Song, Y., Hall, P., Rosin, P.L., Collomosse, J.: Arty shapes. In: Proc. Comp. Aesthetics, pp. 65–73 (2008) Google Scholar
  28. 28.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846 (1998) Google Scholar
  29. 29.
    Wang, J., Xu, Y., Shum, H.Y., Cohen, M.F.: Video tooning. ACM Trans. Graph. 23(3), 574–583 (2004) CrossRefGoogle Scholar
  30. 30.
    Weickert, J., ter Haar Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7(3), 398–410 (1998) CrossRefGoogle Scholar
  31. 31.
    Wen, F., Luan, Q., Liang, L., Xu, Y.Q., Shum, H.Y.: Color sketch generation. In: ACM Symp. Non-photorealistic Animation and Rendering, pp. 47–54 (2006) Google Scholar
  32. 32.
    Winnemöller, H., Olsen, S., Gooch, B.: Real-time video abstraction. ACM Trans. Graph. 25(3), 1221–1226 (2006) CrossRefGoogle Scholar
  33. 33.
    Winnemöller, H., Kyprianidis, J.E., Olsen, S.C.: XDoG: an extended difference-of-Gaussians compendium including advanced image stylization. Comput. Graph. 36(6), 740–753 (2012) CrossRefGoogle Scholar
  34. 34.
    Xu, J., Kaplan, C.S.: Calligraphic packing. In: Graphics Interface 2007, pp. 43–50 (2007) CrossRefGoogle Scholar
  35. 35.
    Xu, J., Kaplan, C.S.: Artistic thresholding. In: ACM Symp. Non-photorealistic Animation and Rendering, pp. 39–47 (2008) Google Scholar
  36. 36.
    Xu, Z., Chen, H., Zhu, S.C., Luo, J.: A hierarchical compositional model for face representation and sketching. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 955–969 (2008) CrossRefGoogle Scholar
  37. 37.
    Xu, X., Zhang, L., Wong, T.T.: Structure-based ASCII art. ACM Trans. Graph. 29(4), 52:1–52:9 (2010) CrossRefGoogle Scholar
  38. 38.
    Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L 0 gradient minimization. ACM Trans. Graph. 30(6), 174 (2011) Google Scholar
  39. 39.
    Zhang, S.H., Li, X.Y., Hu, S.M., Martin, R.R.: Online video stream abstraction and stylization. IEEE Trans. Multimed. 13(6), 1286–1294 (2011) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.School of Computer Science and InformaticsCardiff UniversityCardiffUK

Personalised recommendations