Clinical Decision-Support Systems

  • Mark A. Musen
  • Blackford Middleton
  • Robert A. Greenes


After reading this chapter, you should know the answers to these questions:


Clinical Decision Support Clinical Decision Support System Health Information Technology Biomedical Informatics American National Standard Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, I. D., Chan, M., Clifford, P. C., Cooke, W. M., Dallos, V., de Dombal, F. T., Edwards, M. H., Hancock, D. M., Hewett, D. J., & McIntyre, N. (1986). Computer aided diagnosis of acute abdominal pain: A multicenter study. British Medical Journal, 293(6550), 800–804.PubMedCrossRefGoogle Scholar
  2. Advani, A., Goldstein, M.A., Shahar, Y., Musen, M.A. (2003). Developing quality indicators and auditing protocols from formal guideline models: knowledge representation and transformations. AMIA Annual Symposium Proceedings, 11–15.Google Scholar
  3. Ash, J. S., Sittig, D. F., Poon, E. G., Guappone, K., Campbell, E., & Dykstra, R. H. (2007). The extent and importance of unintended consequences related to computerized provider order entry. Journal of the American Medical Informatics Association: JAMIA, 14(4), 415–423.PubMedCrossRefGoogle Scholar
  4. Baars, M. J. H., Henneman, L., & Ten Kate, L. P. (2005). Deficiency of knowledge of genetics and genetic tests among general practitioners, gynecologists, and pediatricians: A global problem. Genetics in Medicine, 7(9), 605.PubMedCrossRefGoogle Scholar
  5. Baron, R. J. (2010). What’s keeping us so busy in primary care? A snapshot from one practice. The New England Journal of Medicine, 362(17), 1632–1636.PubMedCrossRefGoogle Scholar
  6. Bates, D. W., & Gawande, A. A. (2003). Improving safety with information technology. The New England Journal of Medicine, 348(25), 2526–2534.PubMedCrossRefGoogle Scholar
  7. Bleich, H. (1972). Computer-based consultation: Electrolyte and acid–base disorders. American Journal of Medicine, 53, 285–291.PubMedCrossRefGoogle Scholar
  8. Bloomrosen, M., Starren, J., Lorenzi, N. M., Ash, J. S., Patel, V. L., & Shortliffe, E. H. (2011). Anticipating and addressing the unintended consequences of health IT and policy: A report from the AMIA 2009 Health Policy Meeting. Journal of the American Medical Informatics Association: JAMIA, 18(1), 82–90.PubMedCrossRefGoogle Scholar
  9. Blumenthal, D. (2009). Stimulating the adoption of health information technology. The New England Journal of Medicine, 360(15), 1477–1479.PubMedCrossRefGoogle Scholar
  10. Blumenthal, D., & Glaser, J. P. (2007). Information technology comes to medicine. The New England Journal of Medicine, 356(24), 2527–2534.PubMedCrossRefGoogle Scholar
  11. Blumenthal, D., & Tavenner, M. (2010). The “meaningful use” regulation for electronic health records. The New England Journal of Medicine, 363(6), 501–504.PubMedCrossRefGoogle Scholar
  12. Bright, T. J., Wong, A., Dhurjati, R., Bristow, E., Bastian, L., Coeytaux, R. R., Samsa, G., Hasselblad, V., Williams, J. W., Musty, M. D., Wing, L., Kendrick, A. S., Sanders, G. D., & Lobach, D. (2012). Effect of clinical decision-support systems: A systematic review. Annals of Internal Medicine, 157(1), 29–43.PubMedCrossRefGoogle Scholar
  13. Buchanan, B. G., & Shortliffe, E. H. (1984). Rule-based expert systems: The MYCIN experiments of the Stanford heuristic programming project. Reading: Addison-Wesley.Google Scholar
  14. Chan, I. S., & Ginsburg, G. S. (2011). Personalized medicine: Progress and promise. Annual Review of Genomics and Human Genetics, 12, 217–244.PubMedCrossRefGoogle Scholar
  15. Chan, A. S., Coleman, R. W., Martins, S. B., Advani, A., Musen, M. A., Bosworth, H. B., Oddone, E. Z., Shilpak, M. G., Hoffman, B. B., & Goldstein, M. K. (2004). Evaluating provider adherence in a trial of a guideline-based decision support system for hypertension. Studies in Health Technology and Informatics, 107(Pt 1), 125–129.PubMedGoogle Scholar
  16. Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W., Roth, E., Morton, S. C., et al. (2006). Systematic review: Impact of health information technology on quality, efficiency, and costs of medical care. Annals of Internal Medicine, 144(10), 742–752.PubMedCrossRefGoogle Scholar
  17. Chused, A. E., Kuperman, G. J., & Stetson, P. D. (2008). Alert override reasons: A failure to communicate. Proceeding of the AMIA Annual Symposium, 111–115.Google Scholar
  18. Cimino, J.J., Li, J., Bakken, S., & Patel, V. (2002a). Theoretical, empirical and practical approaches to resolving unmet information needs of clinical information system users. Proceeding of the AMIA Annual Symposium, 170–174.Google Scholar
  19. Cimino, J. J., Patel, V. L., & Kushniruk, A. W. (2002b). The patient clinical information system (PatCIS): technical solutions for and experience with giving patients access to their electronic medical records. [Research Support, U.S. Gov’t, P.H.S.]. International Journal of Medical Informatics, 68(1–3), 113–127.PubMedCrossRefGoogle Scholar
  20. Clancey, W. J., & Shortliffe, E. H. (1984). Readings in medical artificial intelligence: The first decade. Reading: Addison-Wesley.Google Scholar
  21. Clancy, C. M., Anderson, K. M., & White, P. J. (2009). Investing in health information infrastructure: can it help achieve health reform? Health Affairs, 28(2), 478–482.PubMedCrossRefGoogle Scholar
  22. Colombet, I., Bura-Rivière, A., Chatila, R., Chatellier, G., Durieux, P., & PHRC-OAT study group. (2004). Personalized versus non-personalized computerized decision support system to increase therapeutic quality control of oral anticoagulant therapy: An alternating time series analysis. BMC Health Services Research, 4(1), 27.PubMedCrossRefGoogle Scholar
  23. Covell, D., Uman, G., & Manning, P. (1985). Information needs in office practice: are they being met? Annals of Internal Medicine, 103, 596–599.PubMedCrossRefGoogle Scholar
  24. David, J. M., Krivine, J. P., & Simmons, R. (Eds.). (1993). Second generation expert systems. Berlin: Springer.Google Scholar
  25. de Dombal, F. T., Leaper, D. J., Staniland, J. R., McCann, A. P., & Horrocks, J. C. (1972). Computer-aided diagnosis of acute abdominal pain. British Medical Journal, 1, 376–380.CrossRefGoogle Scholar
  26. Decker, S. L., Jamoom, E. W., & Sisk, J. E. (2012). Physicians in nonprimary care and small practices and those age 55 and older lag in adopting electronic health record systems. Health Affairs, 31(5), 1108–1114.PubMedCrossRefGoogle Scholar
  27. DeClerq, P. A., Blom, J. A., Korsten, H. H., & Hasman, A. (2004). Approaches for creating computer-interpretable guidelines that facilitate decision support. Artificial Intelligence in Medicine, 31(1), 1–27.CrossRefGoogle Scholar
  28. DesRoches, C. M., Worzala, C., Joshi, M. S., Kralovec, P. D., & Jha, A. K. (2012). Small, nonteaching, and rural hospitals continue to be slow in adopting electronic health record systems. Health Affairs, 31(5), 1092–1099.PubMedCrossRefGoogle Scholar
  29. Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. Science, 196, 129–136.PubMedCrossRefGoogle Scholar
  30. Fargher, E. A., Eddy, C., Newman, W., Qasim, F., Tricker, K., Elliott, R. A., & Payne, K. (2007). Patients“ and healthcare professionals” views on pharmacogenetic testing and its future delivery in the NHS. Pharmacogenomics, 8(11), 1511–1519.PubMedCrossRefGoogle Scholar
  31. Flexner, A. (1910). Medical education in the united states and Canada: A report to the Carnegie foundation for the advancement of teaching. New York: The Carnegie Foundation for the Advancement of Teaching. OCLC 9795002.Google Scholar
  32. Gawande, A. (2009). The checklist manifesto: How to get things right. New York: Metropolitan Books.Google Scholar
  33. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy, N.F., & Tu, S.W. (2003). International Journal of HumanComputer Studies, 58(1):89–123.Google Scholar
  34. Ginsburg, G. S., & Willard, H. F. (2009). Genomic and personalized medicine: Foundations and applications. Translational Research, 154, 277–287.PubMedCrossRefGoogle Scholar
  35. Goldstein, M.K., Hoffman, B.B., Coleman, R.W., Musen, M.A., Tu, S.W., Advani, A., Shankar, R.D., O’Connor, M. (2000). Implementing clinical practice guidelines while taking account of evidence: ATHENA, an easily modifiable decision-support system for management of hypertension in primary care. In Proceedings of the Annual AMIA Fall Symposium (pp. 300–304). Philadelphia: Hanley & Belfus.Google Scholar
  36. Gorry, G. A., & Barnett, G. O. (1968). Sequential diagnosis by computer. JAMA : The Journal of the American Medical Association, 205(12), 849–854.CrossRefGoogle Scholar
  37. Grimm, R. H., Shimoni, K., Harlan, W. R., & Estes, E. H. J. (1975). Evaluation of patient-care protocol use by various providers. The New England Journal of Medicine, 282(10), 507–511.CrossRefGoogle Scholar
  38. Harrison, M. I., Koppel, R., & Bar-Lev, S. (2007). Unintended consequences of information technologies in health care–an interactive sociotechnical analysis. Journal of the American Medical Informatics Association: JAMIA, 14(5), 542–549.PubMedCrossRefGoogle Scholar
  39. Haynes, R. B., Wilczynski, N. L., & Computerized Clinical Decision Support System (CCDSS) Systematic Review Team. (2010). Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: Methods of a decision-maker-researcher partnership systematic review. Implementation Science: IS, 5, 12.PubMedCrossRefGoogle Scholar
  40. Heckerman, D., & Horvitz, E. (1986). The myth of modularity in rule-based systems for reasoning with uncertainty. In J. Lemmer & L. Kanal (Eds.), Uncertainty in artificial intelligence 2. Amersterdam: North Holland.Google Scholar
  41. Hoffman, M. A., & Williams, M. S. (2011). Electronic medical records and personalized medicine. Human Genetics, 130(1), 33–39.PubMedCrossRefGoogle Scholar
  42. Hripcsak, G., Ludemann, P., Pryor, T. A., Wigertz, O. B., & Clayton, P. D. (1994). Rationale for the Arden syntax. Computers and Biomedical Research, 27, 291–324.PubMedCrossRefGoogle Scholar
  43. Institute of Medicine. (2011a). Engineering a learning healthcare system: A look at the future. Washington, DC: National Academies Press.Google Scholar
  44. Institute of Medicine. (2011b). Health IT and patient safety: Building safer systems for better care. Washington: The National Academies Press.Google Scholar
  45. Isaac, T., Weissman, J., Davis, R., Massagli, M., Cyrulik, A., Sands, D., & Weingart, S. (2009). Overrides of medication alerts in ambulatory care. Archives of Internal Medicine, 169(3), 305.PubMedCrossRefGoogle Scholar
  46. Johnson, P.D., Tu, S.W., Musen, M.A., & Purves, I. (2001a). A virtual medical record for guideline-based decision support. In Proceedings of the AMIA Annual Symposium, 294–298.Google Scholar
  47. Johnson, K. B., Ravert, R. D., & Everton, A. (2001c). Hopkins teen central: Assessment of an internet-based support system for children with cystic fibrosis. Pediatrics, 107(2), E24.PubMedCrossRefGoogle Scholar
  48. Kahn, C. E., Roberts, L. M., Shaffer, K. A., & Haddawy, P. (1997). Construction of a Bayesian network for mammographic diagnosis of breast cancer. Computers in Biology and Medicine, 27, 19–29.PubMedCrossRefGoogle Scholar
  49. Karsh, B.-T., Weinger, M. B., Abbott, P. A., & Wears, R. L. (2010). Health information technology: Fallacies and sober realities. Journal of the American Medical Informatics Association: JAMIA, 17(6), 617–623.PubMedCrossRefGoogle Scholar
  50. Kawamoto, K., Del Fiol, G., Strasberg, H.R., et al. (2010). Multi-national, multi-institutional analysis of clinical decision support data needs to inform development of the HL7 Virtual Medical Record standard. AMIA Annual Symposium Proceedings, 377–381.Google Scholar
  51. Knaus, W. A., Wagner, D. P., & Lynn, J. (1991). Short-term mortality predictions for critically ill hospitalized adults: Science and ethics. Science, 254, 389–394.PubMedCrossRefGoogle Scholar
  52. Kohn, L., Corrigan, J., & Donaldson, M. (Eds.). (2002). To err is human: Building a safer health system. Institute of medicine. Washington: National Academy Press.Google Scholar
  53. Komaroff, A., Black, W., & Flatley, M. (1974). Protocols for physician assistants: Management of diabetes and hypertension. The New England Journal of Medicine, 290, 307–312.PubMedCrossRefGoogle Scholar
  54. Kuperman, G. J., Gardner, R. M., & Pryor, T. A. (1991). HELP: A dynamic hospital information system. New York: Springer.CrossRefGoogle Scholar
  55. Langheier, J. M., & Snyderman, R. (2004). Prospective medicine: The role for genomics in personalized health planning. Pharmacogenomics, 5(1), 1–8.PubMedCrossRefGoogle Scholar
  56. Leape, L. L. (1994). Error in medicine. JAMA: The Journal of the American Medical Association, 272(23), 1851–1857. doi: 10.1001/jama.1994.03520230061039.CrossRefGoogle Scholar
  57. Ledley, R. S., & Lusted, L. B. (1959). Probability, logic and medical diagnosis. Science, 130(3380), 892–930.PubMedCrossRefGoogle Scholar
  58. Lin, N.D., Martins, S.B., Chan, A.S., Coleman, R.W., Bosworth, H.B., Oddone, E.Z., Shankar, R.D., Musen, M.A., Hoffman, B.B., & Goldstein, M.K. (2006). Identifying barriers to hypertension guideline adherence using clinician feedback at the point of care. AMIA Annual Symposium Proceedings, 494–498.Google Scholar
  59. Lindgren, H. (2008). Decision support system supporting clinical reasoning process – an evaluation study in dementia care. Studies in Health Technology and Informatics, 136, 315–320.PubMedGoogle Scholar
  60. Mandl, K. D., & Kohane, I. S. (2012). Escaping the EHR trap — the future of health IT. The New England Journal of Medicine, 366, 2240–2242.PubMedCrossRefGoogle Scholar
  61. McDonald, C. J. (1976). Protocol-based computer reminders, the quality of care and the nonperfectibility of man. The New England Journal of Medicine, 295(24), 1351–1355.PubMedCrossRefGoogle Scholar
  62. McDonald, C. J. (1981). Action-oriented decisions in ambulatory medicine. Philadelphia: Mosby.Google Scholar
  63. Middleton, B. (2009). The clinical decision support consortium. Studies in Health Technology and Informatics, 150, 26–30.PubMedGoogle Scholar
  64. Musen, M. A. (1997). Modeling for decision support. In J. van Bemmel & M. Musen (Eds.), Handbook of medical informatics (pp. 431–448). Heidelberg: Springer.Google Scholar
  65. Musen, M. A. (1998). Domain ontologies in software engineering: Use of PROTÉGÉ with the EON architecture. Methods of Information in Medicine, 37(4–5), 540–550.PubMedGoogle Scholar
  66. Musen, M. A., Tu, S. W., Das, A. K., & Shahar, Y. (1996). EON: A component-based approach to automation of protocol-directed therapy. Journal of the American Medical Informatics Association: JAMIA, 3(6), 367–388.PubMedCrossRefGoogle Scholar
  67. National High Blood Pressure Education Program. (2004). The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. National Heart, Lung, and Blood Institute, National Insitutes of Health.Google Scholar
  68. National Research Council (US) Committee on Engaging the Computer Science Research Community in Health Care Informatics, Stead, W. W., & Lin, H. S. (2009). Computational technology for effective health care: Immediate steps and strategic directions. The national academies collection: Reports funded by National Institutes of Health. Washington (DC): National Academies Press (US).Google Scholar
  69. Osheroff, J., Pifer, E., Sittig, D., & Jenders, R. (2004). Clinical decision support implementers’ workbook. Chicago: HIMSS.Google Scholar
  70. Osheroff, J. A., Teich, J. M., Middleton, B., Steen, E. B., Wright, A., & Detmer, D. E. (2007). A roadmap for national action on clinical decision support. Journal of the American Medical Informatics Association: JAMIA, 14(2), 141–145.PubMedCrossRefGoogle Scholar
  71. Overby, C. L., Tarczy-Hornoch, P., Hoath, J. I., Kalet, I. J., & Veenstra, D. L. (2010). Feasibility of incorporating genomic knowledge into electronic medical records for pharmacogenomic clinical decision support. BMC Bioinformatics, 11(Suppl 9), S10.PubMedCrossRefGoogle Scholar
  72. Patel, V. L., Arocha, J. F., & Zhang, J. (2010). Medical reasoning and thinking. In K. J. Holyoak & R. G. Morrison (Eds.), Oxford handbook of thinking and reasoning. Oxford: Oxford University Press.Google Scholar
  73. Pauker, S. G., & Kassirer, J. P. (1981). Clinical decision analysis by computer. Archives of Internal Medicine, 141(13), 1831–1837.PubMedCrossRefGoogle Scholar
  74. Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., Greenes, R. A., Hall, R., Johnson, P. D., Jones, N., Kumar, A., Miksch, S., Quaglini, S., Seyfang, A., Shortliffe, E. H., & Stefanelli, M. (2003). Comparing computer-interpretable guideline models: A case-study approach. Journal of the American Medical Informatics Association: JAMIA, 10, 52–68.PubMedCrossRefGoogle Scholar
  75. Saria, S., Rajani, A. K., Gould, J., Koller, D., & Penn, A. A. (2010). Integration of early physiological responses predicts later illness severity in preterm infants. Science Translational Medicine, 2(48), 48ra65.PubMedCrossRefGoogle Scholar
  76. Schedlbauer, A., Prasad, V., Mulvaney, C., Phansalkar, S., Stanton, W., Bates, D. W., & Avery, A. J. (2009). What evidence supports the use of computerized alerts and prompts to improve clinicians’ prescribing behavior? Journal of the American Medical Informatics Association: JAMIA, 16(4), 531–538.PubMedCrossRefGoogle Scholar
  77. Schnipper, J. L., Gandhi, T. K., Wald, J. S., Grant, R. W., Poon, E. G., Volk, L. A., et al. (2008a). Design and implementation of a web-based patient portal linked to an electronic health record designed to improve medication safety: The Patient Gateway medications module. Informatics in Primary Care, 16(2), 147–155.PubMedGoogle Scholar
  78. Schnipper, J. L., Linder, J. A., Palchuk, M. B., Einbinder, J. S., Li, Q., Postilnik, A., & Middleton, B. (2008b). “Smart forms” in an electronic medical record: Documentation-based clinical decision support to improve disease management. Journal of the American Medical Informatics Association: JAMIA, 15(4), 513–523.PubMedCrossRefGoogle Scholar
  79. Schwartz, W. B. (1970). Medicine and the computer: The promise and problems of change. The New England Journal of Medicine, 283(23), 1257–1264.PubMedCrossRefGoogle Scholar
  80. Shah, N. R., Seger, A. C., Seger, D. L., Fiskio, J. M., Kuperman, G. J., Blumenfeld, B., Recklet, E. G., et al. (2006). Improving acceptance of computerized prescribing alerts in ambulatory care. Journal of the American Medical Informatics Association: JAMIA, 13(1), 5–11.PubMedCrossRefGoogle Scholar
  81. Shahar, Y., & Musen, M. A. (1996). Knowledge-based temporal abstractions in clinical domains. Artificial Intelligence in Medicine, 8(3), 267–298.PubMedCrossRefGoogle Scholar
  82. Shiffman, R. N., Karras, B. T., Agrawal, A., Chen, R., Marenco, L., & Nath, S. (2000). GEM: A proposal for a more comprehensive guideline document model using XML. Journal of the American Medical Informatics Association: JAMIA, 7(5), 488–498.PubMedCrossRefGoogle Scholar
  83. Shortliffe, E. H. (1976). Computer-based medical consultations: MYCIN. New York: Elsevier/North Holland.Google Scholar
  84. Sittig, D., & Singh, H. (2009). Eight rights of safe electronic health record use. JAMA: The Journal of the American Medical Association, 302(10), 1111–1113.CrossRefGoogle Scholar
  85. Sittig, D. F., & Singh, H. (2011). Defining health information technology-related errors: new developments since to err is human. Archives of Internal Medicine, 171(14), 1281–1284.PubMedCrossRefGoogle Scholar
  86. Sordo, M., Boxwala, A. A., Ogunyemi, O., & Greenes, R. A. (2004). Description and status update on GELLO: A proposed standardized object-oriented expression language for clinical decision support. Studies in Health Technology and Informatics, 107, 164–168.PubMedGoogle Scholar
  87. Sox, H. C., Blatt, M. A., Higgins, M. C., & Marton, K. I. (1988). Medical decision making. Boston: Butterworth Publisher.Google Scholar
  88. Strom, B. L., Schinnar, R., Aberra, F., Bilker, W., Hennessy, S., Leonard, C. E., & Pifer, E. (2010). Unintended effects of a computerized physician order entry nearly hard-stop alert to prevent a drug interaction: A randomized controlled trial. Archives of Internal Medicine, 170(17), 1578–1583.PubMedCrossRefGoogle Scholar
  89. Tang, P. C., Annevelink, J., Suermondt, H. J., & Young, C. Y. (1994a). Semantic integration in a physician’s workstation. International Journal of Bio-Medical Computing, 35(1), 47–60.PubMedCrossRefGoogle Scholar
  90. Tang, P.C., Fafchamps, D., Shortliffe, E.H. (1994b). Traditional medical records as a source of clinical data in the outpatient setting. Proceedings of the Annual Symposium Computer Applications in Medical Care, 575–579.Google Scholar
  91. Tang, P.C., Jaworski, M.A., Fellencer, C.A., Kreider, N., LaRosa, M.P., & Marquardt, W.C. (1996). Clinician information activities in diverse ambulatory care practices. Proceedings: a conference of the American Medical Informatics Association / … AMIA Annual Fall Symposium. AMIA Fall Symposium, 12–16.Google Scholar
  92. Trafton, J., Martins, S., Michel, M., Lewis, E., Wang, D., Combs, A., Scates, N., Tu, S., & Goldstein, M. K. (2010). Evaluation of the acceptability and usability of a decision support system to encourage safe and effective use of opioid therapy for chronic, noncancer pain by primary care providers. Pain Medicine, 11(4), 575–585.PubMedCrossRefGoogle Scholar
  93. Ullman-Cullere, M. H., & Mathew, J. P. (2011). Emerging landscape of genomics in the electronic health record for personalized medicine. Human Mutation, 32(5), 512–516. doi: 10.1002/humu.21456.PubMedCrossRefGoogle Scholar
  94. van der Lei, J., Musen, M. A., van der Does, E., Man in ’t Veld, A. J., & vanr Bemmel, J. H. (1991). Comparison of computer-aided and human review of general practitioners’ management of hypertension. The Lancet, 338(8781), 1504–1508.CrossRefGoogle Scholar
  95. van der Sijs, H., Aarts, J., Vulto, A., & Berg, M. (2006). Overriding of drug safety alerts in computerized physician order entry. Journal of the American Medical Informatics Association: JAMIA, 13(2), 138–147.PubMedCrossRefGoogle Scholar
  96. Warner, H. R. (1979). Computer-assisted medical decision-making. New York: Academic Press.Google Scholar
  97. Warner, H. R., Toronto, A. F., & Veasy, L. (1964). Experience with Bayes’ theorem for computer diagnosis of congenital heart disease. Annals of the New York Academy of Science, 115, 2–16.Google Scholar
  98. Weingart, S. N., Toth, M., Sands, D. Z., Aronson, M. D., Davis, R. B., & Phillips, R. S. (2003). Physicians’ decisions to override computerized drug alerts in primary care. Archives of Internal Medicine, 163(21), 2625–2631.PubMedCrossRefGoogle Scholar
  99. Weinstein, M. C., & Fineberg, H. (1980). Clinical decision analysis. Philadelphia: W. B. Saunders.Google Scholar
  100. Yu, V. L., Buchanan, B. G., Shortliffe, E. H., Wraith, S. M., Davis, R., Scott, A. C., & Cohen, S. N. (1979a). Evaluating the performance of a computer-based consultant. Computer Programs in Biomedicine, 9(1), 95–102.PubMedCrossRefGoogle Scholar
  101. Yu, V. L., Fagan, L. M., Wraith, S. M., Clancey, W. J., Scott, A. C., Hannigan, J., Blum, R. L., Buchanan, B. G., & Cohen, S. N. (1979b). Antimicrobial selection by a computer. A blinded evaluation by infectious disease experts. Journal of the American Medical Association, 242(12), 1279–1282.PubMedCrossRefGoogle Scholar
  102. Zhang, J., & Walji, M. F. (2011). TURF: Toward a unified framework of EHR usability. Journal of Biomedical Informatics, 44(6), 1056–1067.PubMedCrossRefGoogle Scholar
  103. Zhang, J., & Walji, M. F. (2011). TURF: Toward a unified framework of EHR usability. Journal of Biomedical Informatics, 44(6), 1056–1067.PubMedCrossRefGoogle Scholar
  104. Zhang, J., & Walji, M. F. (2011). TURF: Toward a unified framework of EHR usability. Journal of Biomedical Informatics, 44(6), 1056–1067.PubMedCrossRefGoogle Scholar
  105. Zhang, J., & Walji, M. F. (2011). TURF: Toward a unified framework of EHR usability. Journal of Biomedical Informatics, 44(6), 1056–1067.PubMedCrossRefGoogle Scholar
  106. Zhang, J., & Walji, M. F. (2011). TURF: Toward a unified framework of EHR usability. Journal of Biomedical Informatics, 44(6), 1056–1067.PubMedCrossRefGoogle Scholar
  107. Zhang, J., & Walji, M. F. (2011). TURF: Toward a unified framework of EHR usability. Journal of Biomedical Informatics, 44(6), 1056–1067.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Mark A. Musen
    • 1
  • Blackford Middleton
    • 2
  • Robert A. Greenes
    • 3
    • 4
  1. 1.Center for Biomedical Informatics ResearchStanford University School of MedicineStanfordUSA
  2. 2.Informatics CenterVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of Biomedical InformaticsArizona State UniversityTempeUSA
  4. 4.Division of Health Sciences ResearchCollege of Medicine, Mayo ClinicScottsdaleUSA

Personalised recommendations