Periocular Recognition from Low-Quality Iris Images

Chapter
Part of the Advances in Computer Vision and Pattern Recognition book series (ACVPR)

Abstract

Definitions of the periocular region vary, but typically encompass the skin covering the orbit of the eye. Especially in cases where the iris has not been acquired with sufficient quality to reliably compute an IrisCode, the periocular region can provide additional discriminative information for biometric identification. The NIR periocular images which form NIST’s Face and Ocular Challenge Series (FOCS) are characterized by large variations in illumination, eye-lid and eye-lash occlusion, de-focus blur, motion blur and low resolution. We investigate periocular recognition on the FOCS dataset using three distinct classes of features: photometric, keypoint, and frequency-based. We examine the performance of these features alone, in combination, and when fused with classic IrisCodes.

References

  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)CrossRefGoogle Scholar
  2. 2.
    Belhumeur, P., Hespanda, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)Google Scholar
  3. 3.
    Boddeti, V., Smereka, J., Kumar, B.: A comparative evaluation of iris and ocular recognition methods on challenging ocular images. IEEE (2011)Google Scholar
  4. 4.
    Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)MathSciNetMATHGoogle Scholar
  5. 5.
    Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)CrossRefGoogle Scholar
  6. 6.
    Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recogn. 38(12), 2270–2285 (2005)CrossRefGoogle Scholar
  7. 7.
    Klare, B.: Spectrally sampled structural subspace features (4SF). In: Michigan State University Technical Report, MSU-CSE-11-16 (2011)Google Scholar
  8. 8.
    Klare, B., Jain, A.: On a taxonomy of facial features. In: Proceedings of the IEEE Conference on Biometrics: Theory, Applications and Systems (2010)Google Scholar
  9. 9.
    Lee, Y., Micheals, R.J., Phillips, P.J., Filliben, J.J.: Robust iris recognition baseline for the grand challenge. Nat. Inst. Stand. Technol. NISTIR 7777 (2011)Google Scholar
  10. 10.
    Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11(4), 467–476 (2002)CrossRefGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Matey, J.R., Naroditsky, O., Hanna, K., Kolczynski, R., Loiacono, D.J., Mangru, S., Tinker, M., Zappia, T.M., Zhao, W.Y.: Iris on the move: acquisition of images for iris recognition in less constrained environments. Proc. IEEE 94(11), 1936–1947 (2006)CrossRefGoogle Scholar
  13. 13.
    Meyers, E., Wolf, L.: Using biologically inspired features for face processing. Int. J. Comput. Vis. 76(1), 93–104 (2008)CrossRefGoogle Scholar
  14. 14.
    M, R., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)Google Scholar
  15. 15.
    NIST: Face and ocular challenge series. http://www.nist.gov/itl/iad/ig/focs.cfm
  16. 16.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  17. 17.
    Pauca, V.P., Forkin, M., Xu, X., Plemmons, R., Ross, A.A.: Challenging ocular image recognition. p. 80291V. SPIE (2011)Google Scholar
  18. 18.
    Phillips, P.J., Member, S., Bowyer, K.W., Flynn, P.J., Member, S.: Comments on the casia version 1.0 iris dataset. IEEE Trans. Pattern Anal. Mach. Intell. 29 (2007)Google Scholar
  19. 19.
    Phillips, P.J., Flynn, P.J., Beveridge, J.R., Scruggs, W.T., O’Toole, A.J., Bolme, D., Bowyer, K.W., Draper, B.A., Givens, G.H., Lui, Y.M., Sahibzada, H., Scallan Iii, J.A., Weimer, S.: Overview of the multiple biometrics grand challenge. In: Proceedings of the Third International Conference on Advances in Biometrics, ICB ’09, pp. 705–714. Springer, Berlin/Heidelberg (2009)Google Scholar
  20. 20.
    Phillips, P., Scruggs, W., O’Toole, A., Flynn, P., Bowyer, K., Schott, C., Sharpe, M.: FRVT 2006 and ICE 2006 large-scale experimental results. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 831 –846 (2010)CrossRefGoogle Scholar
  21. 21.
    Ross, A., Jillela, R., Smereka, J., Boddeti, V.N., VijayaKumar, B.V.K., Barnard, R., Hu, X., Pauca, P., Plemmons, R.: Matching highly non-ideal ocular images: An information fusion approach. Proceedings of the 5th IAPR International Conference on Biometrics (ICB), New Delhi (2012)Google Scholar
  22. 22.
    Shen, L., Bai, L.: A review on gabor wavelets for face recognition. Pattern Anal. Appl. 9, 273–292 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Thomee, B., Bakker, E.M., Lew, M.S.: TOP-SURF: a visual words toolkit. In: ACM Multimedia’10, pp. 1473–1476 (2010)Google Scholar
  25. 25.
    Wiskott, L., Fellous, J.M., Kuiger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.The MITRE CorporationMcLeanUSA

Personalised recommendations