Engineering Aptamers for Biomedical Applications: Part I

Chapter

Abstract

Aptamers are single-stranded DNA or RNA oligonucleotides that are selected for specific binding to a wide range of targets by systematic evolution of ligands by exponential enrichment (SELEX) technology. Aptamers have high specificity and affinity toward target molecules and exhibit desired thermal stability. Additionally, the oligonucleotide nature makes aptamers easy to be chemically modified or incorporated with other DNA/RNA molecules. Owing to these outstanding properties, aptamers have attracted considerable attention within different branches of biomedicine. On the other hand, biosensors are miniaturized analytical devices that are playing an important role in biomedical applications, especially in clinical diagnoses. Recent advances in molecular engineering of aptamers with enhanced bioavailability signal generation and amplification abilities have greatly facilitated the development of aptamer-based biosensors and have pushed them closer to clinical applications. In this chapter, we will detail the recent development in engineering aptamers and highlight the work for sensor applications by using engineered aptamers.

References

  1. 1.
    Navani N, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10(3):272–281. doi:10.1016/j.cbpa.2006.04.003 Google Scholar
  2. 2.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi:10.1038/346818a0 Google Scholar
  3. 3.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510. doi:10.1126/science.2200121 Google Scholar
  4. 4.
    Ciesiolka J, Gorski J, Yarus M (1995) Selection of an RNA domain that binds Zn2+. RNA 1(5):538–550Google Scholar
  5. 5.
    Li N, Wang Y, Pothukuchy A, Syrett A, Husain N, Gopalakrisha S, Kosaraju P, Ellington AD (2008) Aptamers that recognize drug-resistant HIV-1 reverse transcriptase. Nucleic Acids Res 36(21):6739–6751. doi:10.1093/nar/gkn775 Google Scholar
  6. 6.
    Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y, Cardona D, Witek RP, Liu C, Tan W (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80(3):721–728. doi:10.1021/ac701962v Google Scholar
  7. 7.
    Mairal T, Cengiz Özalp V, Lozano Sánchez P, Mir M, Katakis I, O’Sullivan CK (2007) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390(4):989–1007. doi:10.1007/s00216-007-1346-4 Google Scholar
  8. 8.
    Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M (1996) RNA aptamers that bind l-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 24(6):1029–1036. doi:10.1093/nar/24.6.1029 Google Scholar
  9. 9.
    Hong P, Li W, Li J (2012) Applications of aptasensors in clinical diagnostics. Sensors 12(12):1181–1193. doi:10.3390/s120201181 Google Scholar
  10. 10.
    Tan W, Wang H, Chen Y, Zhang X, Zhu H, Yang C, Yang R, Liu C (2011) Molecular aptamers for drug delivery. Trends Biotechnol 29(12):634–640. doi:10.1016/j.tibtech.2011.06.009 Google Scholar
  11. 11.
    Iliuk AB, Hu L, Tao WA (2011) Aptamer in bioanalytical applications. Anal Chem 83(12):4440–4452. doi:10.1021/ac201057w Google Scholar
  12. 12.
    Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550. doi:10.1038/nrd3141 Google Scholar
  13. 13.
    Meyer C, Hahn U, Rentmeister A (2011) Cell-specific aptamers as emerging therapeutics. J Nucleic Acids 2011:1–18. doi:10.4061/2011/904750 Google Scholar
  14. 14.
    Zhu G, Ye M, Donovan MJ, Song E, Zhao Z, Tan W (2012) Nucleic acid aptamers: an emerging frontier in cancer therapy. Chem Commun 48(85):10472. doi:10.1039/c2cc35042d Google Scholar
  15. 15.
    Esposito CL, Catuogno S, de Franciscis V, Cerchia L (2011) New insight into clinical development of nucleic acid aptamers. Discov Med 11(61):487–496Google Scholar
  16. 16.
    Wang J, Li G (2011) Aptamers against cell surface receptors: selection, modification and application. Curr Med Chem 18(27):4107–4116. doi:10.2174/092986711797189628 Google Scholar
  17. 17.
    Hirsch IB, Armstrong D, Bergenstal RM, Buckingham B, Childs BP, Clarke WL, Peters A, Wolpert H (2008) Clinical application of emerging sensor technologies in diabetes management: consensus guidelines for continuous glucose monitoring (CGM). Diabetes Technol Ther 10(4):232–244. doi:10.1089/dia.2008.0016 quiz 245–236Google Scholar
  18. 18.
    Deisingh AK (2006) Aptamer-based biosensors: biomedical applications. Handb Exp Pharmacol 173:341–357. doi:10.1007/3-540-27262-3_17 Google Scholar
  19. 19.
    Citartan M, Gopinath SC, Tominaga J, Tan SC, Tang TH (2012) Assays for aptamer-based platforms. Biosens Bioelectron 34(1):1–11. doi:10.1016/j.bios.2012.01.002 Google Scholar
  20. 20.
    Vallée-Bélisle A, Plaxco KW (2010) Structure-switching biosensors: inspired by nature. Curr Opin Struc Biol 20(4):518–526. doi:10.1016/j.sbi.2010.05.001 Google Scholar
  21. 21.
    Lubin AA, Plaxco KW (2010) Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 43(4):496–505. doi:10.1021/ar900165x Google Scholar
  22. 22.
    You M, Chen Y, Peng L, Han D, Yin B, Ye B, Tan W (2011) Engineering DNA aptamers for novel analytical and biomedical applications. Chem Sci 2(6):1003. doi:10.1039/c0sc00647e Google Scholar
  23. 23.
    Song K-M, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12(12):612–631. doi:10.3390/s120100612 Google Scholar
  24. 24.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109(5):1948–1998. doi:10.1021/cr030183i Google Scholar
  25. 25.
    Tombelli S, Minunni M, Mascini M (2005) Analytical applications of aptamers. Biosens Bioelectron 20(12):2424–2434. doi:10.1016/j.bios.2004.11.006 Google Scholar
  26. 26.
    Wang W, Jia L-Y (2009) Progress in aptamer screening methods. Chinese J Anal Chem 37(3):454–460. doi:10.1016/s1872-2040(08)60092-4 Google Scholar
  27. 27.
    Gopinath SCB (2006) Methods developed for SELEX. Anal Bioanal Chem 387(1):171–182. doi:10.1007/s00216-006-0826-2 Google Scholar
  28. 28.
    Mendonsa SD, Bowser MT (2004) In vitro evolution of functional DNA using capillary electrophoresis. J Am Chem Soc 126(1):20–21. doi:10.1021/ja037832s Google Scholar
  29. 29.
    Liu Y, Wang C, Li F, Shen S, Tyrrell DLJ, Le XC, Li X-F (2012) DNase-mediated single-cycle selection of aptamers for proteins blotted on a membrane. Anal Chem 84(18):7603–7606. doi:10.1021/ac302047e Google Scholar
  30. 30.
    Misono TS, Kumar PKR (2005) Selection of RNA aptamers against human influenza virus hemagglutinin using surface plasmon resonance. Anal Biochem 342(2):312–317. doi:10.1016/j.ab.2005.04.013 Google Scholar
  31. 31.
    Miyachi Y, Shimizu N, Ogino C, Kondo A (2009) Selection of DNA aptamers using atomic force microscopy. Nucleic Acids Res 38(4):e21–e21. doi:10.1093/nar/gkp1101 Google Scholar
  32. 32.
    Mendonsa SD, Bowser MT (2005) In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis. J Am Chem Soc 127(26):9382–9383. doi:10.1021/ja052406n Google Scholar
  33. 33.
    Tang J, Xie J, Shao N, Yan Y (2006) The DNA aptamers that specifically recognize ricin toxin are selected by two in vitro selection methods. Electrophoresis 27(7):1303–1311. doi:10.1002/elps.200500489 Google Scholar
  34. 34.
    Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci USA 106(9):2989–2994. doi:10.1073/pnas.0813135106 Google Scholar
  35. 35.
    Weng C-H, Huang C-J, Lee G-B (2012) Screening of aptamers on microfluidic systems for clinical applications. Sensors 12(12):9514–9529. doi:10.3390/s120709514 Google Scholar
  36. 36.
    Qian J, Lou X, Zhang Y, Xiao Y, Soh HT (2009) Generation of highly specific aptamers via micromagnetic selection. Anal Chem 81(13):5490–5495. doi:10.1021/ac900759k Google Scholar
  37. 37.
    Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57. doi:10.1021/ar900101s Google Scholar
  38. 38.
    Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) From the cover: aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103(32):11838–11843. doi:10.1073/pnas.0602615103 Google Scholar
  39. 39.
    Tang Z, Parekh P, Turner P, Moyer RW, Tan W (2009) Generating aptamers for recognition of virus-infected cells. Clin Chem 55(4):813–822. doi:10.1373/clinchem.2008.113514 Google Scholar
  40. 40.
    Kunii T, S-i Ogura, Mie M, Kobatake E (2011) Selection of DNA aptamers recognizing small cell lung cancer using living cell-SELEX. Analyst 136(7):1310. doi:10.1039/c0an00962h Google Scholar
  41. 41.
    Liu J, Liu H, Sefah K, Liu B, Pu Y, Van Simaeys D, Tan W (2012) Selection of aptamers specific for adipose tissue. PLoS ONE 7(5):e37789. doi:10.1371/journal.pone.0037789 Google Scholar
  42. 42.
    Thielges MC, Zimmermann J, Yu W, Oda M, Romesberg FE (2008) Exploring the energy landscape of antibody-antigen complexes: protein dynamics, flexibility, and molecular recognition. Biochemistry 47(27):7237–7247. doi:10.1021/bi800374q Google Scholar
  43. 43.
    Liu L, Zhu X, Zhang D, Huang J, Li G (2007) An electrochemical method to detect folate receptor positive tumor cells. Electrochem Commun 9(10):2547–2550. doi:10.1016/j.elecom.2007.07.032 Google Scholar
  44. 44.
    Cao Y, Zhu S, Yu J, Zhu X, Yin Y, Li G (2012) Protein detection based on small molecule-linked DNA. Anal Chem 84(10):4314–4320. doi:10.1021/ac203401h Google Scholar
  45. 45.
    Wang J, Shen M, Cao Y, Li G (2010) Switchable “on–off” electrochemical technique for detection of phosphorylation. Biosens Bioelectron 26(2):638–642. doi:10.1016/j.bios.2010.07.006 Google Scholar
  46. 46.
    Xu Y, Cheng G, He P, Fang Y (2009) A review: electrochemical aptasensors with various detection strategies. Electroanalysis 21(11):1251–1259. doi:10.1002/elan.200804561 Google Scholar
  47. 47.
    Tolle F, Mayer G (2013) Dressed for success—applying chemistry to modulate aptamer functionality. Chem Sci 4(1):60. doi:10.1039/c2sc21510a Google Scholar
  48. 48.
    Burmeister PE, Lewis SD, Silva RF, Preiss JR, Horwitz LR, Pendergrast PS, McCauley TG, Kurz JC, Epstein DM, Wilson C, Keefe AD (2005) Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol 12(1):25–33. doi:10.1016/j.chembiol.2004.10.017 Google Scholar
  49. 49.
    Sekiya S, Noda K, Nishikawa F, Yokoyama T, Kumar PK, Nishikawa S (2006) Characterization and application of a novel RNA aptamer against the mouse prion protein. J Biochem 139(3):383–390. doi:10.1093/jb/mvj046 Google Scholar
  50. 50.
    Lin Y, Nieuwlandt D, Magallanez A, Feistner B, Jayasena SD (1996) High-affinity and specific recognition of human thyroid stimulating hormone (hTSH) by in vitro-selected 2′-amino-modified RNA. Nucleic Acids Res 24(17):3407–3414. doi:10.1093/nar/24.17.3407 Google Scholar
  51. 51.
    Virno A, Randazzo A, Giancola C, Bucci M, Cirino G, Mayol L (2007) A novel thrombin binding aptamer containing a G-LNA residue. Bioorgan Med Chem 15(17):5710–5718. doi:10.1016/j.bmc.2007.06.008 Google Scholar
  52. 52.
    Schmidt KS (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32(19):5757–5765. doi:10.1093/nar/gkh862 Google Scholar
  53. 53.
    Kuwahara M, Sugimoto N (2010) Molecular evolution of functional nucleic acids with chemical modifications. Molecules 15(8):5423–5444. doi:10.3390/molecules15085423 Google Scholar
  54. 54.
    Shoji A, Kuwahara M, Ozaki H, Sawai H (2007) Modified DNA aptamer that binds the (R)-isomer of a thalidomide derivative with high enantioselectivity. J Am Chem Soc 129(5):1456–1464. doi:10.1021/ja067098n Google Scholar
  55. 55.
    Keefe AD, Cload ST (2008) SELEX with modified nucleotides. Curr Opin Chem Biol 12(4):448–456. doi:10.1016/j.cbpa.2008.06.028 Google Scholar
  56. 56.
    King DJ, Bassett SE, Li X, Fennewald SA, Herzog NK, Luxon BA, Shope R, Gorenstein DG (2002) Combinatorial selection and binding of phosphorothioate aptamers targeting human NF-kappa B RelA(p65) and p50. Biochemistry 41(30):9696–9706. doi:10.1021/bi020220k Google Scholar
  57. 57.
    King DJ, Ventura DA, Brasier AR, Gorenstein DG (1998) Novel combinatorial selection of phosphorothioate oligonucleotide aptamers. Biochemistry 37(47):16489–16493. doi:10.1021/bi981780f Google Scholar
  58. 58.
    Du H, Rosbash M (2002) The U1 snRNP protein U1C recognizes the 5′splice site in the absence of base pairing. Nature 419(6902):86–90. doi:10.1038/nature00947 Google Scholar
  59. 59.
    Pagratis NC, Bell C, Chang YF, Jennings S, Fitzwater T, Jellinek D, Dang C (1997) Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol 15(1):68–73. doi:10.1038/nbt0197-68 Google Scholar
  60. 60.
    Musumeci D, Montesarchio D (2012) Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer. Pharmacol Therapeut 136(2):202–215. doi:10.1016/j.pharmthera.2012.07.011 Google Scholar
  61. 61.
    Dollins CM, Nair S, Boczkowski D, Lee J, Layzer JM, Gilboa E, Sullenger BA (2008) Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem Biol 15(7):675–682. doi:10.1016/j.chembiol.2008.05.016 Google Scholar
  62. 62.
    Tasset DM, Kubik MF, Steiner W (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 272(5):688–698. doi:10.1006/jmbi.1997.1275 Google Scholar
  63. 63.
    Padmanabhan K, Padmanabhan KP, Ferrara JD, Sadler JE, Tulinsky A (1993) The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem 268(24):17651–17654Google Scholar
  64. 64.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566. doi:10.1038/355564a0 Google Scholar
  65. 65.
    Müller J, Wulffen B, Pötzsch B, Mayer G (2007) Multidomain targeting generates a high-affinity thrombin-inhibiting bivalent aptamer. ChemBioChem 8(18):2223–2226. doi:10.1002/cbic.200700535 Google Scholar
  66. 66.
    Kim Y, Dennis DM, Morey T, Yang L, Tan W (2010) Engineering dendritic aptamer assemblies as superior inhibitors of protein function. Chem Asian J 5(1):56–59. doi:10.1002/asia.200900421 Google Scholar
  67. 67.
    Hasegawa H, Taira K, Sode K, Ikebukuro K (2008) Improvement of aptamer affinity by dimerization. Sensors 8:1090–1098. doi:10.3390/s8021090 Google Scholar
  68. 68.
    Hsu C-L, Chang H-T, Chen C-T, Wei S-C, Shiang Y-C, Huang C–C (2011) Highly efficient control of thrombin activity by multivalent nanoparticles. Chem Eur J 17(39):10994–11000. doi:10.1002/chem.201101081 Google Scholar
  69. 69.
    Huang YF, Chang HT, Tan W (2008) Cancer cell targeting using multiple aptamers conjugated on nanorods. Anal Chem 80(3):567–572. doi:10.1021/ac702322j Google Scholar
  70. 70.
    Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132(27):9274–9276. doi:10.1021/ja103169v Google Scholar
  71. 71.
    Cho H, Baker BR, Wachsmann-Hogiu S, Pagba CV, Laurence TA, Lane SM, Lee LP, Tok JB (2008) Aptamer-based SERRS sensor for thrombin detection. Nano Lett 8(12):4386–4390. doi:10.1021/nl802245w Google Scholar
  72. 72.
    Xing H, Wong NY, Xiang Y, Lu Y (2012) DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 16(3–4):429–435. doi:10.1016/j.cbpa.2012.03.016 Google Scholar
  73. 73.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14(3):303–308. doi:10.1038/nbt0396-303 Google Scholar
  74. 74.
    Tan W, Fang X, Li J, Liu X (2000) Molecular beacons: a novel DNA probe for nucleic acid and protein studies. Chemistry 6(7):1107–1111. doi:10.1002/(SICI)1521-3765(20000403)6:7<1107:AID-CHEM1107>3.0.CO;2-9 Google Scholar
  75. 75.
    Wang K, Tang Z, Yang CJ, Kim Y, Fang X, Li W, Wu Y, Medley CD, Cao Z, Li J, Colon P, Lin H, Tan W (2009) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed 48(5):856–870. doi:10.1002/anie.200800370 Google Scholar
  76. 76.
    Song S, Liang Z, Zhang J, Wang L, Li G, Fan C (2009) Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed 48(46):8670–8674. doi:10.1002/anie.200901887 Google Scholar
  77. 77.
    Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294(2):126–131. doi:10.1006/abio.2001.5169 Google Scholar
  78. 78.
    Kim B, Jung IH, Kang M, Shim H-K, Woo HY (2012) Cationic conjugated polyelectrolytes-triggered conformational change of molecular beacon aptamer for highly sensitive and selective potassium ion detection. J Am Chem Soc 134(6):3133–3138. doi:10.1021/ja210360v Google Scholar
  79. 79.
    Wu Z-S, Zheng F, Shen G-L, Yu R-Q (2009) A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins. Biomaterials 30(15):2950–2955. doi:10.1016/j.biomaterials.2009.02.017 Google Scholar
  80. 80.
    Liu Y, Tuleouva N, Ramanculov E, Revzin A (2010) Aptamer-based electrochemical biosensor for interferon gamma detection. Anal Chem 82(19):8131–8136. doi:10.1021/ac101409t Google Scholar
  81. 81.
    Shi H, He X, Wang K, Wu X, Ye X, Guo Q, Tan W, Qing Z, Yang X, Zhou B (2011) Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration. Proc Natl Acad Sci USA 108(10):3900–3905. doi:10.1073/pnas.1016197108 Google Scholar
  82. 82.
    Zheng J, Li J, Jiang Y, Jin J, Wang K, Yang R, Tan W (2011) Design of aptamer-based sensing platform using triple-helix molecular switch. Anal Chem 83(17):6586–6592. doi:10.1021/ac201314y Google Scholar
  83. 83.
    Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotech 17(6):580–588. doi:10.1016/j.copbio.2006.10.004 Google Scholar
  84. 84.
    Cho EJ, Yang L, Levy M, Ellington AD (2005) Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP. J Am Chem Soc 127(7):2022–2023. doi:10.1021/ja043490u Google Scholar
  85. 85.
    Lu L-M, Zhang X-B, Kong R-M, Yang B, Tan W (2011) A ligation-triggered DNAzyme cascade for amplified fluorescence detection of biological small molecules with zero-background signal. J Am Chem Soc 133(30):11686–11691. doi:10.1021/ja203693b Google Scholar
  86. 86.
    Achenbach JC, Nutiu R, Li Y (2005) Structure-switching allosteric deoxyribozymes. Anal Chim Acta 534(1):41–51. doi:10.1016/j.aca.2004.03.080 Google Scholar
  87. 87.
    Song P, Xiang Y, Xing H, Zhou Z, Tong A, Lu Y (2012) Label-free catalytic and molecular beacon containing an abasic site for sensitive fluorescent detection of small inorganic and organic molecules. Anal Chem 84(6):2916–2922. doi:10.1021/ac203488p Google Scholar
  88. 88.
    Sook Bang G, Cho S, Lee N, Lee B-R, Kim J-H, Kim B-G (2013) Rational design of modular allosteric aptamer sensor for label-free protein detection. Biosens Bioelectron 39(1):44–50. doi:10.1016/j.bios.2012.06.038 Google Scholar
  89. 89.
    Yoshida W, Sode K, Ikebukuro K (2006) Aptameric enzyme subunit for biosensing based on enzymatic activity measurement. Anal Chem 78(10):3296–3303. doi:10.1021/ac060254o Google Scholar
  90. 90.
    Stojanovic MN, Kolpashchikov DM (2004) Modular aptameric sensors. J Am Chem Soc 126(30):9266–9270. doi:10.1021/ja032013t Google Scholar
  91. 91.
    Wang J, Cao Y, Chen G, Li G (2009) Regulation of thrombin activity with a bifunctional aptamer and hemin: development of a new anticoagulant and antidote pair. ChemBioChem 10(13):2171–2176. doi:10.1002/cbic.200900408 Google Scholar
  92. 92.
    Zhang K, Zhu X, Wang J, Xu L, Li G (2010) Strategy to fabricate an electrochemical aptasensor: application to the assay of adenosine deaminase activity. Anal Chem 82(8):3207–3211. doi:10.1021/ac902771k Google Scholar
  93. 93.
    Wang J, Liu B (2009) Fluorescence resonance energy transfer between an anionic conjugated polymer and a dye-labeled lysozyme aptamer for specific lysozyme detection. Chem Commun 17:2284. doi:10.1039/b820001g Google Scholar
  94. 94.
    Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C (2007) A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc 129(5):1042–1043. doi:10.1021/ja067024b Google Scholar
  95. 95.
    Shlyahovsky B, Li D, Katz E, Willner I (2007) Proteins modified with DNAzymes or aptamers act as biosensors or biosensor labels. Biosens Bioelectron 22(11):2570–2576. doi:10.1016/j.bios.2006.10.009 Google Scholar
  96. 96.
    Chen Y, O’Donoghue MB, Huang YF, Kang H, Phillips JA, Chen X, Estevez MC, Yang CJ, Tan W (2010) A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces. J Am Chem Soc 132(46):16559–16570. doi:10.1021/ja106360v Google Scholar
  97. 97.
    Drolet DW, Moon-McDermott L, Romig TS (1996) An enzyme-linked oligonucleotide assay. Nat Biotechnol 14(8):1021–1025. doi:10.1038/nbt0896-1021 Google Scholar
  98. 98.
    Green LS, Jellinek D, Jenison R, Ostman A, Heldin CH, Janjic N (1996) Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35(45):14413–14424. doi:10.1021/bi961544+ Google Scholar
  99. 99.
    Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin. J Am Chem Soc 126(38):11768–11769. doi:10.1021/ja046970u Google Scholar
  100. 100.
    Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC-Trend. Anal Chem 27(2):108–117. doi:10.1016/j.trac.2007.12.004 Google Scholar
  101. 101.
    Han K, Liang Z, Zhou N (2010) Design strategies for aptamer-based biosensors. Sensors 10(5):4541–4557. doi:10.3390/s100504541 Google Scholar
  102. 102.
    Mascini M, Palchetti I, Tombelli S (2012) Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed 51(6):1316–1332. doi:10.1002/anie.201006630 Google Scholar
  103. 103.
    Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80(3):707–712. doi:10.1021/ac701910r Google Scholar
  104. 104.
    Wang J, Meng W, Zheng X, Liu S, Li G (2009) Combination of aptamer with gold nanoparticles for electrochemical signal amplification: application to sensitive detection of platelet-derived growth factor. Biosens Bioelectron 24(6):1598–1602. doi:10.1016/j.bios.2008.08.030 Google Scholar
  105. 105.
    Bai L, Yuan R, Chai Y, Zhuo Y, Yuan Y, Wang Y (2012) Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Biomaterials 33(4):1090–1096. doi:10.1016/j.biomaterials.2011.10.012 Google Scholar
  106. 106.
    Zhang YL, Huang Y, Jiang JH, Shen GL, Yu RQ (2007) Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. J Am Chem Soc 129(50):15448–15449. doi:10.1021/ja0773047 Google Scholar
  107. 107.
    Wang J, Munir A, Li Z, Zhou HS (2009) Aptamer–Au NPs conjugates-enhanced SPR sensing for the ultrasensitive sandwich immunoassay. Biosens Bioelectron 25(1):124–129. doi:10.1016/j.bios.2009.06.016 Google Scholar
  108. 108.
    Yang CJ, Jockusch S, Vicens M, Turro NJ, Tan WH (2005) Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proc Natl Acad Sci USA 102(48):17278–17283. doi:10.1073/pnas.0508821102 Google Scholar
  109. 109.
    Mok W, Li Y (2008) Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 8(11):7050–7084. doi:10.3390/s8117050 Google Scholar
  110. 110.
    Willner I, Zayats M (2007) Electronic aptamer-based sensors. Angew Chem Int Ed 46(34):6408–6418. doi:10.1002/anie.200604524 Google Scholar
  111. 111.
    Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed 44(34):5456–5459. doi:10.1002/anie.200500989 Google Scholar
  112. 112.
    Wu Z-S, Chen C-R, Shen G-L, Yu R-Q (2008) Reversible electronic nanoswitch based on DNA G-quadruplex conformation: a platform for single-step, reagentless potassium detection. Biomaterials 29(17):2689–2696. doi:10.1016/j.biomaterials.2008.02.024 Google Scholar
  113. 113.
    Li H, Cao Y, Wu X, Ye Z, Li G (2012) Peptide-based electrochemical biosensor for amyloid β 1–42 soluble oligomer assay. Talanta 93:358–363. doi:10.1016/j.talanta.2012.02.055 Google Scholar
  114. 114.
    White RJ, Plaxco KW (2010) Exploiting binding-induced changes in probe flexibility for the optimization of electrochemical biosensors. Anal Chem 82(1):73–76. doi:10.1021/ac902595f Google Scholar
  115. 115.
    Ferapontova EE, Olsen EM, Gothelf KV (2008) An RNA aptamer-based electrochemical biosensor for detection of theophylline in serum. J Am Chem Soc 130(13):4256–4258. doi:10.1021/ja711326b Google Scholar
  116. 116.
    Radi AE, Acero Sanchez JL, Baldrich E, O’Sullivan CK (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128(1):117–124. doi:10.1021/ja053121d Google Scholar
  117. 117.
    Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128(10):3138–3139. doi:10.1021/ja056957p Google Scholar
  118. 118.
    Zhao S, Yang W, Lai RY (2011) A folding-based electrochemical aptasensor for detection of vascular endothelial growth factor in human whole blood. Biosens Bioelectron 26(5):2442–2447. doi:10.1016/j.bios.2010.10.029 Google Scholar
  119. 119.
    Radi A-E, O’Sullivan CK (2006) Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition. Chem Commun 32:3432. doi:10.1039/b606804a Google Scholar
  120. 120.
    Zuo X, Xiao Y, Plaxco KW (2009) High specificity, electrochemical sandwich assays based on single aptamer sequences and suitable for the direct detection of small-molecule targets in blood and other complex matrices. J Am Chem Soc 131(20):6944–6945. doi:10.1021/ja901315w Google Scholar
  121. 121.
    Sharma AK, Kent AD, Heemstra JM (2012) Enzyme-linked small-molecule detection using split aptamer ligation. Anal Chem 84(14):6104–6109. doi:10.1021/ac300997q Google Scholar
  122. 122.
    Freeman R, Sharon E, Tel-Vered R, Willner I (2009) Supramolecular cocaine-aptamer complexes activate biocatalytic cascades. J Am Chem Soc 131(14):5028–5029. doi:10.1021/ja809496n Google Scholar
  123. 123.
    Kashefi-Kheyrabadi L, Mehrgardi MA (2012) Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate. Biosens Bioelectron 37(1):94–98. doi:10.1016/j.bios.2012.04.045 Google Scholar
  124. 124.
    Dave N, Liu J (2012) Biomimetic sensing based on chemically induced assembly of a signaling DNA aptamer on a fluid bilayer membrane. Chem Commun 48(31):3718. doi:10.1039/c2cc00070a Google Scholar
  125. 125.
    Freeman R, Girsh J, Fang-ju Jou A, Ho JAA, Hug T, Dernedde J, Willner I (2012) Optical aptasensors for the analysis of the vascular endothelial growth factor (VEGF). Anal Chem 84(14):6192–6198. doi:10.1021/ac3011473 Google Scholar
  126. 126.
    Yamamoto-Fujita R, Kumar PK (2005) Aptamer-derived nucleic acid oligos: applications to develop nucleic acid chips to analyze proteins and small ligands. Anal Chem 77(17):5460–5466. doi:10.1021/ac050364f Google Scholar
  127. 127.
    Lin Z, Chen L, Zhu X, Qiu B, Chen G (2010) Signal-on electrochemiluminescence biosensor for thrombin based on target-induced conjunction of split aptamer fragments. Chem Commun 46(30):5563. doi:10.1039/c0cc00932f Google Scholar
  128. 128.
    Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125(16):4771–4778. doi:10.1021/ja028962o Google Scholar
  129. 129.
    Mei H, Bing T, Yang X, Qi C, Chang T, Liu X, Cao Z, Shangguan D (2012) Functional-group specific aptamers indirectly recognizing compounds with alkyl amino group. Anal Chem 84(17):7323–7329. doi:10.1021/ac300281u Google Scholar
  130. 130.
    Zhang J, Wang L, Zhang H, Boey F, Song S, Fan C (2010) Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution. Small 6(2):201–204. doi:10.1002/smll.200901012 Google Scholar
  131. 131.
    Yoshizumi J, Kumamoto S, Nakamura M, Yamana K (2008) Target-induced strand release (TISR) from aptamer–DNA duplex: a general strategy for electronic detection of biomolecules ranging from a small molecule to a large protein. Analyst 133(3):323. doi:10.1039/b719089c Google Scholar
  132. 132.
    Wu ZS, Guo MM, Zhang SB, Chen CR, Jiang JH, Shen GL, Yu RQ (2007) Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Anal Chem 79(7):2933–2939. doi:10.1021/ac0622936 Google Scholar
  133. 133.
    Chen L, Cai Q, Luo F, Chen X, Zhu X, Qiu B, Lin Z, Chen G (2010) A sensitive aptasensor for adenosine based on the quenching of Ru(bpy)32+-doped silica nanoparticle ECL by ferrocene. Chem Commun 46(41):7751. doi:10.1039/c0cc03225e Google Scholar
  134. 134.
    Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101(39):14036–14039. doi:10.1073/pnas.0406115101 Google Scholar
  135. 135.
    Zheng M, Jagota A, Semke ED, Diner BA, McLean RS, Lustig SR, Richardson RE, Tassi NG (2003) DNA-assisted dispersion and separation of carbon nanotubes. Nat Mate 2(5):338–342. doi:10.1038/nmat877 Google Scholar
  136. 136.
    Lu C-H, Yang H–H, Zhu C-L, Chen X, Chen G-N (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48(26):4785–4787. doi:10.1002/anie.200901479 Google Scholar
  137. 137.
    Yang R, Tang Z, Yan J, Kang H, Kim Y, Zhu Z, Tan W (2008) Noncovalent assembly of carbon nanotubes and single-stranded DNA: an effective sensing platform for probing biomolecular interactions. Anal Chem 80(19):7408–7413. doi:10.1021/ac801118p Google Scholar
  138. 138.
    Zhao J, Chen G, Zhu L, Li G (2011) Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun 13(1):31–33. doi:10.1016/j.elecom.2010.11.005 Google Scholar
  139. 139.
    Wang J, Wang L, Liu X, Liang Z, Song S, Li W, Li G, Fan C (2007) A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv Mater 19(22):3943–3946. doi:10.1002/adma.200602256 Google Scholar
  140. 140.
    Wang W, Chen C, Qian M, Zhao XS (2008) Aptamer biosensor for protein detection using gold nanoparticles. Anal Biochem 373(2):213–219. doi:10.1016/j.ab.2007.11.013 Google Scholar
  141. 141.
    Wang L, Zhu J, Han L, Jin L, Zhu C, Wang E, Dong S (2012) Graphene-based aptamer logic gates and their application to multiplex detection. ACS Nano 6(8):6659–6666. doi:10.1021/nn300997f Google Scholar
  142. 142.
    Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130(33):10856–10857. doi:10.1021/ja802913f Google Scholar
  143. 143.
    Tang D, Tang J, Li Q, Su B, Chen G (2011) Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I. Anal Chem 83(19):7255–7259. doi:10.1021/ac201891w Google Scholar
  144. 144.
    Lei J, Ju H (2012) Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev 41(6):2122. doi:10.1039/c1cs15274b Google Scholar
  145. 145.
    Chiu T-C, Huang C–C (2009) Aptamer-functionalized nano-biosensors. Sensors 9(12):10356–10388. doi:10.3390/s91210356 Google Scholar
  146. 146.
    Moore P (2005) PCR: replicating success. Nature 435(7039):235–238. doi:10.1038/435235a Google Scholar
  147. 147.
    Kim J, Easley CJ (2011) Isothermal DNA amplification in bioanalysis: strategies and applications. Bioanalysis 3(2):227–239. doi:10.4155/bio.10.172 Google Scholar
  148. 148.
    Eisenstein BI (1990) The polymerase chain reaction. A new method of using molecular genetics for medical diagnosis. N Engl J Med 322(3):178–183. doi:10.1056/NEJM199001183220307 Google Scholar
  149. 149.
    Liao S, Liu Y, Zeng J, Li X, Shao N, Mao A, Wang L, Ma J, Cen H, Wang Y, Zhang X, Zhang R, Wei Z, Wang X (2010) Aptamer-based sensitive detection of target molecules via RT-PCR signal amplification. Bioconjug Chem 21(12):2183–2189. doi:10.1021/bc100032v Google Scholar
  150. 150.
    Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20(5):473–477. doi:10.1038/nbt0502-473 Google Scholar
  151. 151.
    Pai SS, Ellington AD (2009) Using RNA aptamers and the proximity ligation assay for the detection of cell surface antigens. Methods Mol Biol 504:385–398. doi:10.1007/978-1-60327-569-9_21 Google Scholar
  152. 152.
    Kim J, Hu J, Sollie RS, Easley CJ (2010) Improvement of sensitivity and dynamic range in proximity ligation assays by asymmetric connector hybridization. Anal Chem 82(16):6976–6982. doi:10.1021/ac101762m Google Scholar
  153. 153.
    Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward DC (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet 19(3):225–232. doi:10.1038/898 Google Scholar
  154. 154.
    Miao P, Ning L, Li X, Li P, Li G (2012) Electrochemical strategy for sensing protein phosphorylation. Bioconjugate Chem 23(1):141–145. doi:10.1021/bc200523p Google Scholar
  155. 155.
    Zhao W, Ali MM, Brook MA, Li Y (2008) Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew Chem Int Ed 47(34):6330–6337. doi:10.1002/anie.200705982 Google Scholar
  156. 156.
    Lee J, Icoz K, Roberts A, Ellington AD, Savran CA (2010) Diffractometric detection of proteins using microbead-based rolling circle amplification. Anal Chem 82(1):197–202. doi:10.1021/ac901716d Google Scholar
  157. 157.
    Cho EJ, Lee J-W, Ellington AD (2009) Applications of aptamers as sensors. Annu Rev Anal Chem 2(1):241–264. doi:10.1146/annurev.anchem.1.031207.112851 Google Scholar
  158. 158.
    Yang L, Fung CW, Cho EJ, Ellington AD (2007) Real-time rolling circle amplification for protein detection. Anal Chem 79(9):3320–3329. doi:10.1021/ac062186b Google Scholar
  159. 159.
    Xu Y, Lunnen KD, Kong H (2001) Engineering a nicking endonuclease N. AlwI by domain swapping. Proc Natl Acad Sci USA 98(23):12990–12995. doi:10.1073/pnas.241215698 Google Scholar
  160. 160.
    Xu W, Xue X, Li T, Zeng H, Liu X (2009) Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 48(37):6849–6852. doi:10.1002/anie.200901772 Google Scholar
  161. 161.
    Liu Z, Zhang W, Zhu S, Zhang L, Hu L, Parveen S, Xu G (2011) Ultrasensitive signal-on DNA biosensor based on nicking endonuclease assisted electrochemistry signal amplification. Biosens Bioelectron 29(1):215–218. doi:10.1016/j.bios.2011.07.076 Google Scholar
  162. 162.
    Li J, Fu H-E, Wu L-J, Zheng A-X, Chen G-N, Yang H–H (2012) General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Anal Chem 84(12):5309–5315. doi:10.1021/ac3006186 Google Scholar
  163. 163.
    Jie G, Wang L, Yuan J, Zhang S (2011) Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe–ZnS–quantum dot nanoclusters. Anal Chem 83(10):3873–3880. doi:10.1021/ac200383z Google Scholar
  164. 164.
    Zhu X, Zhao J, Wu Y, Shen Z, Li G (2011) Fabrication of a highly sensitive aptasensor for potassium with a nicking endonuclease-assisted signal amplification strategy. Anal Chem 83(11):4085–4089. doi:10.1021/ac200058r Google Scholar
  165. 165.
    Feng K, Kong R, Wang H, Zhang S, Qu F (2012) A universal amplified strategy for aptasensors: enhancing sensitivity through allostery-triggered enzymatic recycling amplification. Biosens Bioelectron 38(1):121–125. doi:10.1016/j.bios.2012.05.008 Google Scholar
  166. 166.
    Zhang H, Li F, Dever B, Li X-F, Le XC (2012) DNA-mediated homogeneous binding assays for nucleic acids and proteins. Chem Rev. doi:10.1021/cr300340p Google Scholar
  167. 167.
    Fan Q, Zhao J, Li H, Zhu L, Li G (2012) Exonuclease III-based and gold nanoparticle-assisted DNA detection with dual signal amplification. Biosens Bioelectron 33(1):211–215. doi:10.1016/j.bios.2012.01.003 Google Scholar
  168. 168.
    Zuo X, Xia F, Xiao Y, Plaxco KW (2010) Sensitive and selective amplified fluorescence DNA detection based on exonuclease III-aided target recycling. J Am Chem Soc 132(6):1816–1818. doi:10.1021/ja909551b Google Scholar
  169. 169.
    Xuan F, Luo X, Hsing IM (2012) Ultrasensitive solution-phase electrochemical molecular beacon-based DNA detection with signal amplification by exonuclease III-assisted target recycling. Anal Chem 84(12):5216–5220. doi:10.1021/ac301033w Google Scholar
  170. 170.
    Liu X, Freeman R, Willner I (2012) Amplified fluorescence aptamer-based sensors using exonuclease III for the regeneration of the analyte. Chem Eur J 18(8):2207–2211. doi:10.1002/chem.201103342 Google Scholar
  171. 171.
    Tong P, Zhang L, Xu J–J, Chen H-Y (2011) Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Biosens Bioelectron 29(1):97–101. doi:10.1016/j.bios.2011.07.075 Google Scholar
  172. 172.
    Scrimin P, Prins LJ (2011) Sensing through signal amplification. Chem Soc Rev 40(9):4488. doi:10.1039/c1cs15024c Google Scholar
  173. 173.
    Zhu X, Yang J, Liu M, Wu Y, Shen Z, Li G (2013) Sensitive detection of human breast cancer cells based on aptamer–cell–aptamer sandwich architecture. Anal Chim Acta 764:59–63. doi:10.1016/j.aca.2012.12.024 Google Scholar
  174. 174.
    Cao Y, Wang J, Xu Y, Li G (2010) Combination of enzyme catalysis and electrocatalysis for biosensor fabrication: Application to assay the activity of indoleamine 2,3-dioxygensae. Biosens Bioelectron 26(1):87–91. doi:10.1016/j.bios.2010.05.019 Google Scholar
  175. 175.
    Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210. doi:10.1002/adma.200903783 Google Scholar
  176. 176.
    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. doi:10.1038/nnano.2007.260 Google Scholar
  177. 177.
    Golub E, Pelossof G, Freeman R, Zhang H, Willner I (2009) Electrochemical, photoelectrochemical, and surface plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal Chem 81(22):9291–9298. doi:10.1021/ac901551q Google Scholar
  178. 178.
    Li W, Li J, Qiang W, Xu J, Xu D (2013) Enzyme-free colorimetric bioassay based on gold nanoparticle-catalyzed dye decolorization. Analyst 138(3):760. doi:10.1039/c2an36374g Google Scholar
  179. 179.
    Zhang XB, Wang Z, Xing H, Xiang Y, Lu Y (2010) Catalytic and molecular beacons for amplified detection of metal ions and organic molecules with high sensitivity. Anal Chem 82(12):5005–5011. doi:10.1021/ac1009047 Google Scholar
  180. 180.
    Vinkenborg JL, Karnowski N, Famulok M (2011) Aptamers for allosteric regulation. Nat Chem Biol 7(8):519–527. doi:10.1038/nchembio.609 Google Scholar
  181. 181.
    Yang Q, Nie Y, Zhu X, Liu X, Li G (2009) Study on the electrocatalytic activity of human telomere G-quadruplex–hemin complex and its interaction with small molecular ligands. Electrochim Acta 55(1):276–280. doi:10.1016/j.electacta.2009.08.050 Google Scholar
  182. 182.
    Zhu X, Zhang W, Xiao H, Huang J, Li G (2008) Electrochemical study of a hemin–DNA complex and its activity as a ligand binder. Electrochim Acta 53(13):4407–4413. doi:10.1016/j.electacta.2008.01.042 Google Scholar
  183. 183.
    Pelossof G, Tel-Vered R, Elbaz J, Willner I (2010) Amplified biosensing using the horseradish peroxidase-mimicking DNAzyme as an electrocatalyst. Anal Chem 82(11):4396–4402. doi:10.1021/ac100095u Google Scholar
  184. 184.
    Golub E, Freeman R, Willner I (2011) A hemin/G-quadruplex acts as an NADH oxidase and NADH peroxidase mimicking DNAzyme. Angew Chem Int Ed 50(49):11710–11714. doi:10.1002/anie.201103853 Google Scholar
  185. 185.
    Tang L, Liu Y, Ali MM, Kang DK, Zhao W, Li J (2012) Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem 84(11):4711–4717. doi:10.1021/ac203274k Google Scholar
  186. 186.
    Yuan Y, Yuan R, Chai Y, Zhuo Y, Ye X, Gan X, Bai L (2012) Hemin/G-quadruplex simultaneously acts as NADH oxidase and HRP-mimicking DNAzyme for simple, sensitive pseudobienzyme electrochemical detection of thrombin. Chem Commun 48(38):4621–4623. doi:10.1039/c2cc31423a Google Scholar
  187. 187.
    Zhu X, Cao Y, Liang Z, Li G (2010) Aptamer-based and DNAzyme-linked colorimetric detection of cancer cells. Protein Cell 1(9):842–846. doi:10.1007/s13238-010-0110-2 Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Laboratory of Biosensing Technology, School of Life SciencesShanghai UniversityShanghaiChina
  2. 2.Department of Biochemistry and State Key Laboratory of Pharmaceutical BiotechnologyNanjing UniversityNanjingChina

Personalised recommendations