Discrete-Event Systems in a Dioid Framework: Control Theory

  • Laurent Hardouin
  • Olivier Boutin
  • Bertrand Cottenceau
  • Thomas Brunsch
  • Jörg Raisch

Abstract

In this chapter, we will recall contributions to dioid theory dealing with control that were achieved during the last two decades. Just like in classical control engineering, control is to be understood as having an action on the inputs so as to adapt to given specifications. For instance, one could aim at finding an optimal control in order to track an a priori known output trajectory. Since inversion, which would be necessary for such a computation, does not exist in general in a dioid framework, we will also present notions of residuation theory, which introduces pseudo-inverses that are suitable to our needs. Provided a model of a system and a specified output for it, it can be shown that there exists a greatest input that leads to an output which is lower than or equal to the specified one. In practice, this greatest solution implies that all the events occur as late as possible while ensuring that the output events occur before the ones given by the specified output. In a production management context, this comes down to delaying as much as possible the input of raw parts in the manufacturing system, while ensuring a predefined throughput; hence the internal stock is reduced as much as possible. The control strategy is then optimal according to the just-in-time criterion. This chapter will provide the results allowing to synthesize this optimal control. But this kind of open-loop strategy does not take the real-time response of the system into account. So we will also extend control strategies to closed-loop ones, which allow to react to possible disturbances. For each control strategy an illustrative example dealing with a High-Throughput Screening system, which has served as a case study within the DISC project, will be given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and Linearity, An Algebra for Discrete Event Systems. John Wiley and Sons, New York (1992)MATHGoogle Scholar
  2. 2.
    Blyth, T.S., Janowitz, M.F.: Residuation Theory. Pergamon Press, Oxford (1972)MATHGoogle Scholar
  3. 3.
    Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer (2005)Google Scholar
  4. 4.
    Cohen, G., Moller, P., Quadrat, J.P., Viot, M.: Algebraic tools for the performance evaluation of discrete event systems. Proceedings of the IEEE 77(1), 39–58 (1989)CrossRefGoogle Scholar
  5. 5.
    Cottenceau, B., Hardouin, L., Boimond, J.L., Ferrier, J.L.: Synthesis of greatest linear feedback for timed event graphs in dioid. IEEE Transactions on Automatic Control 44(6), 1258–1262 (1999)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cottenceau, B., Hardouin, L., Lhommeau, M., Boimond, J.L.: Data processing tool for calculation in dioid. In: Proc. 5th Int. Workshop on Discrete Event Systems, Ghent, Belgium (2000)Google Scholar
  7. 7.
    Cottenceau, B., Hardouin, L., Boimond, J.L., Ferrier, J.L.: Model reference control for timed event graphs in dioids. Automatica 37(9), 1451–1458 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Cottenceau, B., Lhommeau, M., Hardouin, L., Boimond, J.L.: On timed event graph stabilization by output feedback in dioid. Kybernetika 39(2), 165–176 (2003)MathSciNetMATHGoogle Scholar
  9. 9.
    Cuninghame-Green, R.A.: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, vol. 166. Springer (1979)Google Scholar
  10. 10.
    De Schutter, B., van den Boom, T.J.J.: Model predictive control for max-plus linear discrete event systems. Automatica 37(7), 1049–1056 (2001)MATHCrossRefGoogle Scholar
  11. 11.
    Gallot, F., Boimond, J.L., Hardouin, L.: Identification of simple elements in max-algebra: application to SISO discrete event systems modelisation. In: Proc. 4th European Control Conference, Brussels, Belgium (1997)Google Scholar
  12. 12.
    Gaubert, S.: Théorie des Systèmes Linéaires dans les Dioïdes. Thèse. École des Mines de Paris, France (1992)Google Scholar
  13. 13.
    Gaubert, S.: Resource optimization and (min,+) spectral theory. IEEE Transactions on Automatic Control 40(11), 1931–1934 (1995)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Hardouin, L., Menguy, E., Boimond, J.L., Ferrier, J.L.: Discrete event systems control in dioids algebra. Journal Européen des Systèmes Automatisés 31(3), 433–452 (1997)Google Scholar
  15. 15.
    Hardouin, L., Cottenceau, B., Lhommeau, M., Le Corronc, E.: Interval systems over idempotent semiring. Linear Algebra and its Applications 431(5-7), 855–862 (2009)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hardouin, L., Maia, C.A., Cottenceau, B., Lhommeau, M.: Max-plus linear observer: application to manufacturing systems. In: Proc. 10th Int. Workshop on Discrete Event Systems, Berlin, Germany (2010)Google Scholar
  17. 17.
    Hardouin, L., Maia, C.A., Cottenceau, B., Lhommeau, M.: Observer design for (max,plus) linear systems. IEEE Transactions on Automatic Control 55(2), 538–543 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hardouin, L., Lhommeau, M., Shang, Y.: Towards geometric control of max-plus linear systems with applications to manufacturing systems. In: Proc. 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, Florida, USA (2011)Google Scholar
  19. 19.
    Heidergott, B., Olsder, G.J., van der Woude, J.: Max Plus at Work – Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications. Princeton University Press (2006)Google Scholar
  20. 20.
    Krob, D.: Complete systems of \({\cal{B}}\)-rational identities. Theoretical Computer Science 89, 207–343 (1991)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Lhommeau, M., Hardouin, L., Cottenceau, B.: Disturbance decoupling of timed event graphs by output feedback controller. In: Proc. 6th Int. Workshop on Discrete Event Systems, Zaragoza, Spain (2002)Google Scholar
  22. 22.
    Lhommeau, M., Hardouin, L., Cottenceau, B., Jaulin, L.: Interval analysis and dioid: application to robust controller design for timed event graphs. Automatica 40(11), 1923–1930 (2004)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lhommeau, M., Hardouin, L., Ferrier, J.L., Ouerghi, I.: Interval analysis in dioid: application to robust open loop control for timed event graphs. In: Proc. 44th IEEE Conference on Decision and Control and European Control Conference, Seville, Spain (2005)Google Scholar
  24. 24.
    Lhommeau, M., Hardouin, L., Santos Mendes, R., Cottenceau, B.: On the model reference control for max-plus linear systems. In: Proc. 44th IEEE Conference on Decision and Control and European Control Conference, Seville, Spain (2005)Google Scholar
  25. 25.
    Litvinov, G.L., Sobolevskiw, A.N.: Idempotent interval analysis and optimization problems. Reliable Computing 7(5), 353–377 (2001)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Maia, C.A., Hardouin, L., Santos Mendes, R., Cottenceau, B.: Optimal closed-loop control for timed event graphs in dioid. IEEE Transactions on Automatic Control 48(12), 2284–2287 (2003)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Maia, C.A., Santos Mendes, R., Hardouin, L.: Some results on identification of timed event graphs in dioid. In: Proc. 11th IEEE Mediterranean Conference on Control and Automation, Rhodes, Greece (2003)Google Scholar
  28. 28.
    Menguy, E., Boimond, J.L., Hardouin, L.: A feedback control in max-algebra. In: Proc. 4th European Control Conference, Brusselles, Belgium (1997)Google Scholar
  29. 29.
    Menguy, E., Boimond, J.L., Hardouin, L.: Optimal control of discrete event systems in case of updated reference input. In: Proc. IFAC Conference on System Structure and Control, Nantes, France (1998)Google Scholar
  30. 30.
    Menguy, E., Boimond, J.L., Hardouin, L., Ferrier, J.L.: Just in time control of timed event graphs: update of reference input, presence of uncontrollable input. IEEE Transactions on Automatic Control 45(11), 2155–2159 (2000)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Necoara, I., De Schutter, B., van den Boom, T.J.J., Hellendoorn, H.: Stable model predictive control for constrained max-plus-linear systems. Discrete Event Dynamic Systems: Theory and Applications 17(3), 329–354 (2007)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Max-Plus: Second order theory of min-linear systems and its application to discrete event systems. In: Proc. 30th IEEE Conf. on Decision and Control, Brighton, United Kingdom (1991)Google Scholar
  33. 33.
    Schullerus, G., Krebs, V., De Schutter, B., van den Boom, T.J.J.: Input signal design for identification of max-plus-linear systems. Automatica 42(6), 937–943 (2006)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    van den Boom, T.J.J., De Schutter, B.: Model predictive control for perturbed max-plus-linear systems: A stochastic approach. Int. Journal of Control 77(3), 302–309 (2004)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Laurent Hardouin
    • 1
  • Olivier Boutin
    • 2
  • Bertrand Cottenceau
    • 1
  • Thomas Brunsch
    • 1
    • 3
  • Jörg Raisch
    • 3
    • 4
  1. 1.LUNAM, University of Angers, LISA, ISTIAAngersFrance
  2. 2.Calle Santiago 2 – 4∘CCadizSpain
  3. 3.Fachgebiet RegelungssystemeTechnische Universität BerlinBerlinGermany
  4. 4.Fachgruppe System- und RegelungstheorieMax-Planck-Institut für Dynamik komplexer technischer SystemeMagdeburgGermany

Personalised recommendations