Right Ventricular Anomalies

  • Frédérique BailliardEmail author
  • Marina L. Hughes


The advantages of cardiovascular magnetic resonance (CMR) imaging for static and dynamic characterization of the right ventricle are increasingly being realized. The advantages are even more pronounced when imaging the right ventricle affected by congenital malformation, in every age group.


Cardiovascular Magnetic Resonance Pulmonary Arterial Hypertension Right Ventricle Tricuspid Valve Ventricular Septal Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

Movie 6.1

This is raw, isotropic, 3D data in the coronal plane, from the first pass of a MR angiogram, triggered when contrast fills the left heart. The patient is an infant with complex double outlet RV, subpulmonary VSD, left aortic arch, with aberrant left subclavian artery and coarctation aorta. The patient initially underwent coarctation repair and PA banding, and subsequently underwent arterial switch procedure, involving the Le Compte maneuver, PA debanding and VSD closure. This data clearly demonstrates severe, long-segment, tubular narrowing of the proximal left pulmonary artery, significant dilatation of the neo-aortic root and a tortuous aortic arch, with mild residual coarctation (MOV 6782 KB) (698 kb)
Movie 6.2 This is a 360-degree rotational movie, made from the 3D volume-rendered data from the patient described above (MOV 699 KB)
Movie 6.3

A segmented, bSSFP cine, showing a skewed sagittal view of the right ventricle that includes both inflow and outflow tracts. This adult patient has unoperated, double-chambered right ventricle, associated with a perimembranous ventricular septal defect. Persistent, native, septo-parietal fibromuscular bands occupy a high horizontal position, proximal to the infundibular region, and give rise to dynamic obstruction. The level of the obstruction is shown with a white arrow, the level of the pulmonary valve is shown with a black arrow. The unobstructed infundibular region lies between these levels (see also Fig. 6.3) (MOV 635 KB)

Movie 6.4

A pair of segmented bSSFP cines from the same patient in Fig. 6.3a and Movie 6.3, with the slice reference position of the axial plane (the left-hand image) shown on the right-hand skewed, sagittal image. The axially orientated image demonstrates the network of obstructive fibromuscular bands and the relationship of these to the perimembranous VSD (MOV 893 KB)

Movie 6.5

A segmented, bSSFP cine image in the short axis plane showing the obstructive, mid-ventricular, fibromuscular bands causing flow acceleration and turbulence towards the RV outflow tract. The flattened interventricular septal motion in systole suggests elevated systolic pressures in the proximal RV chamber. Poor ECG gating caused by occasional ventricular ectopic beats degrades the technical quality of this image (MOV 2217 KB)

Movie 6.6

A segmented, bSSFP cine, showing a 4-chamber view from an adult patient following “one and a half ventricle” repair of PA/IVS. This patient has a pulmonary valve homograft and a bidirectional cavopulmonary anastomosis. The right ventricle is hypoplastic with impaired systolic function (RV ejection fraction 47 %) and severe diastolic dysfunction. Note the sharp shift of the interventricular septum towards the left during diastole (see also Fig. 6.4) (MOV 2181 KB) (1.9 mb)
Movie 6.7 This is a segmented, breath-hold bSSFP cine view in the mid-ventricular short axis plane, from an 11-year-old patient with idiopathic pulmonary hypertension. There is severe hypertrophy and dilatation of the right ventricle. The right ventricular systolic function is globally, severely reduced. There is bowing of the septum towards the left ventricle throughout the cardiac cycle and interventricular dyssynchrony (see also Fig. 6.7) (MOV 1973 KB) (1.6 mb)
Movie 6.8 This is a segmented, breath-hold bSSFP cine, showing a sagittal view of the RV outflow tract, dilated MPA and proximal LPA from 16-year-old patient with Eisenmenger physiology, following chronic pulmonary overcirculation due to an ASD and a large muscular VSD. The spatial and temporal resolution of the image has been lowered to give a shorter breath-hold duration, because of the poor breath-holding capacity of the patient (see also Fig. 6.8) (MOV 1630 KB)


  1. 1.
    Luijnenburg SE, Robbers-Visser D, Moelker A, Vliegen HW, Mulder BJM, Helbing WA. Intra-observer and inter-observer variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging. Int J Cardiovasc Imaging. 2010;26:57–64.PubMedCrossRefGoogle Scholar
  2. 2.
    Winter MM, Bernink FJP, Groenink M, Bouma BJ, van Dijk AP, Helbing WA, Tijssen JG, Mulder BJ. Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delineation of the cavity. J Cardiovasc Magn Reson. 2008;10:40–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Devos D, Kilner P. Calculations of cardiovascular shunts and regurgitation using magnetic resonance ventricular volume and aortic and pulmonary flow measurements. Eur Radiol. 2010;20:410–21.PubMedCrossRefGoogle Scholar
  4. 4.
    Kramer C, Barkhausen J, Flamm S, Kim R, Nagel E. Standardized cardiovascular magnetic resonance imaging protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson. 2008;10:35–44.PubMedCrossRefGoogle Scholar
  5. 5.
    Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, van Rossum AC, Shaw LJ, Yucel EK. Clinical indications of cardiovascular magnetic resonance: consensus panel report. Eur Heart J. 2004;25:1940–65.PubMedCrossRefGoogle Scholar
  6. 6.
    Kind T, Mauritz GJ, Marcus JT, van de Veerdonk M, Westerfhof N, Vonk-Noordegraaf A. Right ventricular ejection fraction is better reflected by transverse rather than longitudinal wall motion in pulmonary hypertension. J Cardiovasc Magn Reson. 2010;12:35–46.PubMedCrossRefGoogle Scholar
  7. 7.
    Alfakih K, Plein S, Bloomer T, Jones T, Ridgway J, Sivanathan M. Comparison of right ventricular volume measurements between axial and short axis orientation using steady-state free precession magnetic resonance imaging. J Magn Reson Imaging. 2003;18:25–32.PubMedCrossRefGoogle Scholar
  8. 8.
    Fratz S, Schuhbaeck A, Buchner C, Busch R, Meierhofer C, Martinoff S, Hess J, Stern H. Comparison of accuracy of axial slices versus short axis slices for measuring ventricular volumes by cardiac magnetic resonance in patient with corrected tetralogy of Fallot. Am J Cardiol. 2009;103:1764–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Bradlow WM, Hughes ML, Keenan NG, Bucciarelli-Ducci C, Assomull R, Gibbs JS, Mohiaddin RH. Measuring the heart in pulmonary arterial hypertension (PAH): implications for trial study size. J Magn Reson Imaging. 2010;31:117–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17(3):205–16.PubMedCrossRefGoogle Scholar
  11. 11.
    Mahle WT, Martinez R, Silverman N, Cohen M, Anderson R. Anatomy, echocardiography, and surgical approach to double outlet right ventricle. Cardiol Young. 2004;18 Suppl 3:39–51.Google Scholar
  12. 12.
    Wilkinson JL. Double outlet ventricle. In: Anderson RH, Baker EJ, Macartney FJ, Rigby ML, Shinebourne EA, Tynan M, editors. Paediatric cardiology. 2nd ed. London: Churchill Livingstone; 2002. p. 1353–81.Google Scholar
  13. 13.
    Lev M, Bharati S, Meng CC, Liberthson RR, Paul MH, Idriss F. A concept of double-outlet right ventricle. J Thorac Cardiovasc Surg. 1972;64:271–81.PubMedGoogle Scholar
  14. 14.
    Jonas R. Double outlet right ventricle. In: Jonas RA, Dinardo J, Laussen PC, Howe R, LaPierre R, Matte G, editors. Comprehensive surgical management of congenital heart disease. London: Arnold Publishers; 2004. p. 413–28.CrossRefGoogle Scholar
  15. 15.
    Coats L, Khambadkone S, Derrick G, Hughes M, Jones R, Mist B, Pellerin D, Marek J, Deanfield JE, Bonhoeffer P, Taylor AM. Physiologic consequences of percutaneous pulmonary valve implantation: the different behaviour of volume and pressure overloaded ventricles. Circulation. 2007;28:1886–93.Google Scholar
  16. 16.
    Lurz P, Puranik R, Nordmeyer J, Muthurangu V, Hansen MS, Schievano S, Marek J, Bonhoeffer P, Taylor AM. Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: contribution of septal motion and interventricular mechanical delay. Eur Heart J. 2009;30:2266–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Uemura H, Yagihar T, Kawashima Y, Nishigaki K, Kamiya T, Ho SY, Anderson RH. Coronary arterial anatomy in double-outlet right ventricle with subpulmonary VSD. Ann Thorac Surg. 1995;59:591–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Takeuchi K, McGowan F, Moran AM, Zurakowski D, Mayer JE, Jonas RA, del Nido PJ. Surgical outcome of double-outlet right ventricle with subpulmonary VSD. Ann Thorac Surg. 2001;71:49–53.PubMedCrossRefGoogle Scholar
  19. 19.
    Brown JW, Ruzmetov M, Okada Y, Jiay P, Turrentine MW. Surgical results in patients with double outlet right ventricle: a 20-year experience. Ann Thorac Surg. 2001;72:1630–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Bengel FM, Hauser M, Duvernoy CS, Kuehn A, Ziegler SI, Stollfuss JC, Beckmann M, Sauer U, Muzik O, Schwaiger M, Hess J. Myocardial blood flow and coronary flow reserve late after anatomical correction of transposition of the great arteries. J Am Coll Cardiol. 1998;32(7):1955–61.PubMedCrossRefGoogle Scholar
  21. 21.
    Gagliardi MG, Adorisio R, Crea F, Versacci P, Di Donato R, Sanders SP. Abnormal vasomotor function of the epicardial coronary arteries in children five to eight years after arterial switch operation. J Am Coll Cardiol. 2005;46(8):1565–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Lacour-Gayet F, Haun C, Ntalakoura K, Belli E, Houyet L, Marcsek P, Wagner F, Weil J. Biventricular repair of double outlet right ventricle with non-committed ventricular septal defect (VSD) by VSD rerouting to the pulmonary artery and arterial switch. Eur J Cardiothorac Surg. 2002;21:1042–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Belli E, Serraf A, Lacour-Gayet F, Hubler F, Zoghby J, Houyel L, Planche C. Double-outlet right ventricle with non-committed ventricular septal defect. Eur J Cardiothorac Surg. 1999;15:747–52.PubMedCrossRefGoogle Scholar
  24. 24.
    Artrip JH, Sauer H, Campbell DN, Mitchell MB, Haun C, Almodovar MC, Hraska V, Lacour-Gayet F. Biventricular repair in double outlet right ventricle: surgical results based on the STS-EACTS International Nomenclature classification. Eur J Cardiothorac Surg. 2006;29:545–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Rychik J, Jacobs ML, Norwood WI. Early changes in ventricular geometry and ventricular septal defect size following Rastelli operation or intraventricular baffle repair for conotruncal anomaly. A cause for development of subaortic stenosis. Circulation. 1994;90(5 Pt 2):II13–9.PubMedGoogle Scholar
  26. 26.
    Telagh R, Alex-Mekishvili V, Hetzer R, Lange PE, Berger F, Abdul-Khaliq H. Initial clinical manifestations and mid-long-term results after surgical repair of double-chambered right ventricle in children and adults. Cardiol Young. 2008;18:268–74.PubMedCrossRefGoogle Scholar
  27. 27.
    Alva C, Ho SY, Lincoln CR, Rigby ML, Wright A, Anderson RH. The nature of the obstructive muscular bundles in double-chambered right ventricle. J Thorac Cardiovasc Surg. 1999;117:1180–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Hoffman P, Wojcik AW, Rozanski J, Siudalska H, Jakubowska E, Wlodarska EK, Kowalski M. The role of echocardiography in diagnosing double chambered right ventricle in adults. Heart. 2004;90:789–93.PubMedCrossRefGoogle Scholar
  29. 29.
    Kilner PJ, Sievers B, Meyer GP, Ho SY. Double-chambered right ventricle or sub-indundibular stenosis assessed by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2002;4:373–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Hachiro Y, Takagi N, Koyanagi T, Morikawa M, Abe T. Repair of double-chambered right ventricle: surgical results and long-term follow-up. Ann Thorac Surg. 2001;72:1520–2.PubMedCrossRefGoogle Scholar
  31. 31.
    Fricker FJ, Zuberbuhler JR. Pulmonary atresia with intact ventricular septum. In: Anderson RH, Baker EJ, Macartney FJ, Rigby ML, Shinebourne EA, Tynan M, editors. Paediatric cardiology. 2nd ed. London: Churchill Livingstone; 2002. p. 1177–89.Google Scholar
  32. 32.
    Bull C, de Leval MR, Mercanti C, Macartney FJ, Anderson RH. Pulmonary atresia and intact ventricular septum: a revised classification. Circulation. 1982;66(2):266–72.PubMedCrossRefGoogle Scholar
  33. 33.
    Shinebourne EA, Rigby ML, Carvalho JS. Pulmonary atresia with intact ventricular septum: from fetus to adult. Heart. 2008;84:1350–7.Google Scholar
  34. 34.
    Dyamenahalli U, McCrindle BW, McDonald C, Trivedi KR, Smallhorn JF, Benson LN, Coles J, Williams WC, Freedom RM. Pulmonary atresia with intact ventricular septum: management of, and outcomes for, a cohort of 210 consecutive patients. Cardiol Young. 2004;14:299–308.PubMedCrossRefGoogle Scholar
  35. 35.
    Kutsche LM, Van Mierop LHS. Pulmonary atresia with and without ventricular septal defect: a different etiology and pathogenesis for the atresia in the 2 types? Am J Cardiol. 1983;51:932–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Daubeney P, Delany DJ, Anderson RH, Sandor GG, Slavik Z, Keeton BR, Webber SA. Pulmonary atresia with intact ventricular septum: range of morphology in a population based study. J Am Coll Cardiol. 2002;39:1670–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Freedom RM, Nykanen DG. Pulmonary atresia and intact ventricular septum. In: Adams F, Allen M, Moss A, editors. Moss and Adams’ heart disease in infants, children, and adolescents: including the fetus and young adult. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2001. p. 845–79.Google Scholar
  38. 38.
    Ashburn DA, Blackstone EH, Wells WJ, Jonas RA, Pigula FA, Manning PB, Lofland GK, Williams WG, McCrindle BW. Determinants of mortality and type of repair in neonates with pulmonary atresia and intact ventricular septum. J Thorac Cardiovasc Surg. 2004;127(4):1000–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Yoshimura N, Yamaguchi M, Ohashi H, Oshima Y, Oka S, Yoshida M, Murakami H, Tei T. Pulmonary atresia with intact ventricular septum: strategy based on right ventricular morphology. J Thorac Cardiovasc Surg. 2003;126(5):1417–26.PubMedCrossRefGoogle Scholar
  40. 40.
    Hannan RL, Zabinsky JA, Eng M, Stanfill RM, Ventura RA, Rossi AF, Nykanen DG, Zahn EM, Burker RP. Midterm results for collaborative treatment of pulmonary atresia with intact ventricular septum. Ann Thorac Surg. 2009;87:1227–33.PubMedCrossRefGoogle Scholar
  41. 41.
    Bull C, Kostelka M, Sorensen K, de Leval M. Outcome measures for the neonatal management of pulmonary atresia with intact ventricular septum. J Thorac Cardiovasc Surg. 1994;107:359–66.PubMedGoogle Scholar
  42. 42.
    Liang XC, Lam WWM, Cheung EWY, Wong SJ, Cheung YF. Restrictive right ventricular physiology and right ventricular fibrosis as assessed by cardiac magnetic resonance and exercise capacity after biventricular repair of pulmonary atresia and intact ventricular septum. Clin Cardiol. 2010;33(2):104–10.PubMedCrossRefGoogle Scholar
  43. 43.
    Grosse-Wortmann L, Al-Otay A, Yoo SJ. Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging. 2009;2:219–25.PubMedCrossRefGoogle Scholar
  44. 44.
    Whitehead K, Gillespie MJ, Harris MA, Fogel MA, Rome JJ. Non-invasive quantification of systemic-to-pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections. Circ Cardiovasc Imaging. 2009;2:405–11.PubMedCrossRefGoogle Scholar
  45. 45.
    Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott G, Gaine SP, Gladwin MT, Jing ZC, Korwka MJ, Langlenben D, Nakanishi N, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54:s43–54.PubMedCrossRefGoogle Scholar
  46. 46.
    Hopkins WE, Ochoa LL, Richardson GW, Trulock EP. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J Heart Lung Transplant. 1996;15:100–5.PubMedGoogle Scholar
  47. 47.
    Galie N, Manes A, Negro L, Palazzini M, Bacchi-Reggiani ML, Branzi A. A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur Heart J. 2009;30:394–403.PubMedCrossRefGoogle Scholar
  48. 48.
    Saba TS, Foster J, Cockburn M, Cowan M, Peacock AJ. Ventricular mass index using magnetic resonance imaging accurately estimates pulmonary artery pressure. Eur Respir J. 2002;20:1519–24.PubMedCrossRefGoogle Scholar
  49. 49.
    Hoeper MM, TOngers J, Leppert A, Baus S, Maier R, Lotz J. Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and MRI in patients with pulmonary hypertension. Chest. 2001;120:502–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Kondo C, Caputo GR, Maui T, Foster E, O’Sullivan M, Stulbar MS, Golden J, Caterjee K, Higgins CB. Pulmonary hypertension: pulmonary flow quantification and flow profile analysis with velocity-encoded cine MR imaging. Radiology. 1992;183:751–8.PubMedGoogle Scholar
  51. 51.
    Alunni JP, Degano B, Arnaud C, Tetu L, Blot-Souletie N, Didier A, Otal P, Rousseau H, Chabbert V. Cardiac MRI in pulmonary artery hypertension: correlations between morphological and functional parameters and invasive measurements. Eur Radiol. 2010;20:1149–59.PubMedCrossRefGoogle Scholar
  52. 52.
    Roeleveld RJ, Marcus JT, Boonstra A, Postmus PE, Marques KM, Bronzwaer JG, Vonk-Noordegraaf A. A comparison of non-invasive MRI-based methods of estimating pulmonary artery pressure in pulmonary hypertension. J Magn Reson Imaging. 2005;22:67–72.PubMedCrossRefGoogle Scholar
  53. 53.
    Dhingra VK, Fenwick JC, Walley KR, Chittock DR, Ronco JJ. Lack of agreement between thermodilution and Fick cardiac output in critically ill patients. Chest. 2002;122:990–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Van Grondelle A, Ditchey RV, Groves BM, Wagner WW, Reeves JT. Thermodiluation method overestimates low cardiac output in humans. Am J Physiol. 1983;245(4):H690–2.PubMedGoogle Scholar
  55. 55.
    Muthurangu V, Taylor A, Andriantsimiavona R, Hegde S, Miquel ME, Tulloh R, Baker E, Hill DLG, Razavi RS. Novel method of quantifying pulmonary vascular resistance by use of simultaneous invasive pressure monitoring and phase-contrast magnetic resonance flow. Circulation. 2004;110:826–34.PubMedCrossRefGoogle Scholar
  56. 56.
    Van Wolferen SA, Marcus JT, Boonstra A, Marques KMJ, Bronzwaer JGF, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A. Prognostic value of right ventricular mass, volume and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28:1250–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Ng CS, Wells AU, Padley SP. A CT sign of chronic pulmonary arterial hypertension: the ratio of main pulmonary artery to aortic diameter. J Thorac Imaging. 1999;14(4):270–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Boerritger B, Mauritz GJ, Marcus JT, Helderman F, Postmus PE, Westerhof N, Vonk-Noordegraaf A. Progressive dilatation of the main pulmonary artery is a characteristic of pulmonary arterial hypertension and is not related to changes in pressure. Chest. 2010;138:1395–401.CrossRefGoogle Scholar
  59. 59.
    Appelbaum L, Yigla M, Bendayan D, Reichart N, Fink G, Priel I, Schwartz Y, Richman P, Picard E, Goldman S, Kramer MR. Primary pulmonary hypertension in Israel: a national survey. Chest. 2001;119:1801–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Dambrauskaite V, Delcroix M, Claus P, Herbots L, D’hooge J, Bijnens B, Rademakers F, Sutherland GR. Regional right ventricular dysfunction in chronic pulmonary hypertension. J Am Soc Echocardiogr. 2007;20(10):1172–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Reiter G, Reiter U, Kovacs G, Kainz B, Schmidt K, Maier R, Olschewsk H, Rienmueller R. Magnetic resonance derived 3-dimensional blood flow patterns in the main pulmonary artery as a marker of pulmonary hypertension and a measure of elevated mean pulmonary arterial pressure. Circ Cardiovasc Imaging. 2008;1:23–30.PubMedCrossRefGoogle Scholar
  62. 62.
    Muthurangu V, Lurz P, Critchely JD, Deanfield JE, Taylor AM, Hansen M. Real-time assessment of right and left ventricular volumes and function in patients with congenital heart disease by using high spatiotemporal resolution radial k-t SENSE. Radiology. 2008;248(3):782–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Centre for Cardiovascular ImagingGreat Ormond Street Hospital for Children NHS TrustLondonUK
  2. 2.Bailliard Henry Pediatric CardiologyRaleighUSA
  3. 3.Cardiorespiratory UnitGreat Ormond Street Hospital for Children Foundation TrustLondonUK

Personalised recommendations