Advertisement

Motion Detection in Static Backgrounds

  • Ester Martínez-Martín
  • Ángel P. del Pobil
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

Motion detection plays a fundamental role in any object tracking or video surveillance algorithm, to the extent that nearly all such algorithms start with motion detection. Actually, the reliability with which potential foreground objects in movement can be identified, directly impacts on the efficiency and performance level achievable by subsequent processing stages of tracking or object recognition. However, detecting regions of change in images of the same scene is not a straightforward task since it does not only depend on the features of the foreground elements, but also on the characteristics of the background such as, for instance, the presence of vacillating elements. So, in this chapter, we have focused on the motion detection problem in the basic case, i.e., when all background elements are motionless. The goal is to solve different issues referred to the use of different imaging sensors, the adaptation to different environments, different motion speed, the shape changes of the targets, or some uncontrolled dynamic factors such as, for instance, gradual/sudden illumination changes. So, first, a brief overview of previous related approaches is presented by analyzing factors which can make the system fail. Then, we propose a motion segmentation algorithm that successfully deals with all the arisen problems. Finally, performance evaluation, analysis, and discussion are carried out.

Keywords

Motion detection Background subtraction Visual surveillance Image segmentation Computer vision 

References

  1. 1.
    Collins, R., Lipton, A., Kanade, T., Fijiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P., Wixson, L.: A system for video surveillance and monitoring. Tech. rep., Carnegie Mellon University, Pittsburg, PA (2000)Google Scholar
  2. 2.
    Kameda, Y., Minoh, M.: A human motion estimation method using 3-successive video frames. In: International Conference on Virtual Systems and Multimedia (VSMM), pp. 135–140. Gifu, Japan (1996)Google Scholar
  3. 3.
    Kanade, T., Collins, R., Lipton, A., Burt, P., Wixson, L.: Advances in cooperative multi-sensor video surveillance. In: Darpa Image Understanding Workshop, vol. I, pp. 3–24. Morgan Kaufmann (1998)Google Scholar
  4. 4.
    Migliore, D., Matteucci, M., Naccari, M.: A revaluation of frame difference in fast and robust motion detection. In: 4th ACM International Workshop on Video Surveillance and Sensor Networks (VSSN), pp. 215–218. Santa Barbara, California (2006)Google Scholar
  5. 5.
    Wren, C., Azarbeyejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 19(7), 780–785 (1997)Google Scholar
  6. 6.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–168 (2004)Google Scholar
  7. 7.
    Mičušík, B.: Two view geometry of omnidirectional cameras. Ph.D. thesis, Center for Machine Perception, Czech Technical University in Prague (2004)Google Scholar
  8. 8.
    Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm (1999)
  9. 9.
    Hörster, E., Lienhart, R.: http://mmc36.informatik.uni-augsburg.de/VSSN06_OSAC/ (2006)
  10. 10.
    Taj, M.: Surveillance performance evaluation initiative (spevi)—audiovisual people dataset. http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007_d.html (2007)
  11. 11.
  12. 12.
    Berger, J., Patel, T., Shin, D., Piltz, J., Stone, R.: Computerized stereochronoscopy and alteration flicker to detect optic nerve head contour change. Ophtalmology 107(7) (2000)Google Scholar
  13. 13.
    Hu, J., Kahsi, R., Lopresti, D., Nagy, G., Wilfong, G.: Why table ground-truthing is hard. In: Sixth International Conference on Document Analysis and Recognition, pp. 129–133. Seattle, WA, USA (2001)Google Scholar
  14. 14.
    Rosin, P., Ioannidis, E.: Evaluation of global image thresholding for change detection. Pattern Recognition Letters 24(14), 2345–2356 (2003)Google Scholar
  15. 15.
    Cheung, S., Kamath, C.: Robust techniques for background subtraction in urban traffic video. Electronic Imaging: Video Communications and Image Processing 5308(1), 881–892 (2004)Google Scholar
  16. 16.
    Benezeth, Y., Jodoin, P., Emile, B., Laurent, H., Rosenberger, C.: Review and evaluation of commonly-implemented background subtraction algorithms. In: 19th International Conference on Pattern Recognition (ICPR), pp. 1–4. Tampa, Florida (2008)Google Scholar
  17. 17.
    Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: 23rd International Conference on Machine Learning, pp. 233–240. Pittsburg, Pennsylvania (2006)Google Scholar
  18. 18.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 246–252 (1999)Google Scholar
  19. 19.
    Matsuyama, T., Ohya, T., Habe, H.: Background subtraction for non-stationary scenes. In: Fourth Asian Conference on Computer Vision, pp. 662–667. Singapore (2000)Google Scholar
  20. 20.
    Haritaoglu, I., Harwood, D., Davis, L.: W4: Real-time surveillance of people and their activities. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 22(8), 809–830 (2000)Google Scholar
  21. 21.
    Nakai, H.: Non-parameterized bayes decision method for moving object detection. In: Asian Conference on Computer Vision. Singapore (1995)Google Scholar
  22. 22.
    Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 22(8), 831–843 (2000)Google Scholar
  23. 23.
    Toyama, K., Krum, J., Brumitt, B., Meyers, B.: Wallflower: Principles and practice of background maintenance. In: Seventh IEEE International Conference on Computer Vision (ICCV), vol. 1, pp. 255–261. Kerkyra, Greece (1999)Google Scholar
  24. 24.
    Kottow, D., Koppen, M., del Solar, J.R.: A background maintenance model in the spatial-range domain. In: 2nd ECCV Workshop on Statistical Methods in Video Processing, pp. 141–152. Prague, Czech Republic (2004)Google Scholar
  25. 25.
    Varcheie, P., Sills-Lavoie, M., Bilodeau, G.A.: An efficient region-based background subtraction technique. In: Canadian Conference on Computer and Robot Vision, pp. 71–78 (2008)Google Scholar
  26. 26.
    Cha, S., Srihari, S.: On measuring the distance between histograms. Pattern Recognition 35(6), 1355–1370 (2002)Google Scholar
  27. 27.
    Max-Planck-Institut-Informatik: http://www.mpi-inf.mpg.de/departments/irg3/software.html (2005)
  28. 28.
  29. 29.
  30. 30.
  31. 31.

Copyright information

© Ester Martínez-Martín 2012

Authors and Affiliations

  • Ester Martínez-Martín
    • 1
  • Ángel P. del Pobil
    • 1
  1. 1.Department of Computer Science and EngineeringJaume I UniversityCastellón de la PlanaSpain

Personalised recommendations