Exploring Influence and Interests Among Users Within Social Networks

  • Jose SimoesEmail author
  • Julia Kiseleva
  • Elena Sivogolovko
  • Boris Novikov


The spread of influence among individuals in a social network is one of the fundamental questions in the social sciences. In this chapter we consider the main definitions of influence, which are based on a small set of “snapshot” observations of a social network. The former is particularly useful because large-scale social network data sets are often only available in snapshots or crawls. In our work, considering a rich dataset of user preferences and interactions, we use clustering techniques to study how user interests group together and identify the most popular users within these groups. For this purpose, we focus on multiple dimensions of users-related data, providing a more detailed process model of how influence spreads. In parallel, we study the measurement of influence within the network according to interest dependencies. We validate our analysis using the history of user social interactions on Facebook. Furthermore, this chapter shows how these ideas can be applied in real-world scenarios, namely for recommendation and advertising systems.


Social Network Recommendation System Cluster Structure User Preference Online Social Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aslam, J.A., Pavlu, V., Savell, R.: A unified model for metasearch, pooling, and system evaluation. In: Proceedings of the Twelfth International Conference on Information and Knowledge Management, CIKM ’03, pp. 484–491. ACM, New York (2003)Google Scholar
  2. 2.
    Bakshy, E., Hofman, J., Mason, W., Watts, D.: Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the fourth ACM international conference on Web search and data mining, WSDM ’11, pp. 65–74. ACM, New York (2011). 10.1145/1935826.1935845Google Scholar
  3. 3.
    Bhattacharyya, P., Garg, A., Wu, S.: Analysis of user keyword similarity in online social networks, Soc. Netw. Anal. Min. 1(3), 143–158 (2011). 10.1007/s13278-010-0006-4CrossRefGoogle Scholar
  4. 4.
    Cosley, D., Huttenlocher, D.P., Kleinberg, J.M., Lan, X., Suri, S.: Sequential influence models in social networks. In: ICWSM, Washington (2010)Google Scholar
  5. 5.
    Crandall, D., Cosley, D., Huttenlocher, D., Kleinberg, J., Suri, S.: Feedback effects between similarity and social influence in online communities. In: Proceedings of the 14th ACM SIGKDD, KDD ’08, pp. 160–168. ACM, New York (2008)Google Scholar
  6. 6.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD ’01: Proceedings of the Seventh ACM SIGKDD, pp. 57–66. ACM, New York (2001)Google Scholar
  7. 7.
    Duarte, J.M.M., Fred, A.L.N., Lourenço, A., Duarte, F.J.F.: On consensus clustering validation. In: Proceedings of the 2010 Joint IAPR International Conference on Structural, Syntactic, and Statistical Pattern Recognition, SSPR&SPR’10, pp. 385–394. Springer, Berlin/Heidelberg (2010)Google Scholar
  8. 8.
    Ester, M., Kriegel, H.-P., Jörg, S., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, pp. 226–231. Available at: (1996)
  9. 9.
    Goder, A., Filkov, V.: Consensus clustering algorithms: comparison and refinement. In: ALENEX, San Francisco, pp. 109–117 (2008)Google Scholar
  10. 10.
    Hogg, T., Lerman, K.: Social dynamics of digg. In: ICWSM, Washington (2010)Google Scholar
  11. 11.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the 9th ACM SIGKDD, KDD ’03, pp. 137–146. ACM, New York (2003)Google Scholar
  12. 12.
    Kempe, D., Kleinberg, J., Tardos, E.: Influential nodes in a diffusion model for social networks. In: ICALP, Lisbon (2005)Google Scholar
  13. 13.
    Koponen, J.: Futureself: emerging digitized life patterns and a personal future simulation system. Futures J. Policy Plann. Futures Stud. 42(9), 981–994 (2010)Google Scholar
  14. 14.
    Larkey, L.B., Markman, A.B.: Processes of similarity judgment. Cogn. Sci. 29(6), 1061–1076 (2005)CrossRefGoogle Scholar
  15. 15.
    Lee, D.H., Brusilovsky, P.: Social networks and interest similarity: the case of CiteULike. In: Proceedings of the 21st ACM conference on Hypertext and hypermedia, HT ’10, pp. 151–156. ACM, New York (2010). 10.1145/1810617.1810643Google Scholar
  16. 16.
    Leskovec, J., Singh, A., Kleinberg, J.: Patterns of influence in a recommendation network. In: Advances in Knowledge Discovery and Data Mining, pp. 380–389. Springer Berlin/Heidelberg (2006). 10.1007/11731139_44Google Scholar
  17. 17.
    Levine, S., Kurzban, R.: Explaining clustering in social networks: towards an evolutionary theory of cascading benefits. Manag. Decis. Econ. 27, 173–187 (2006)CrossRefGoogle Scholar
  18. 18.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)CrossRefGoogle Scholar
  19. 19.
    Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91–118 (2003). 10.1023/A:1023949509487zbMATHCrossRefGoogle Scholar
  20. 20.
    Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: KDD ’02: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 61–70. ACM, New York (2002)Google Scholar
  21. 21.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW ’01: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM, New York (2001)Google Scholar
  22. 22.
    Segaran, T.: Programming Collective Intelligence: Building Smart Web 2.0 Applications. O’Reilly, Beijing (2007)Google Scholar
  23. 23.
    Simoes, J., Lampe, S., Magedanz, T.: Enabling next generation multimedia social services. In: IEEE Global Telecommunications Conference, IEEE, Miami (2010)Google Scholar
  24. 24.
    Tselentis, G., Galis, A., Gavras, A., Krco, S., Lotz, V., Simperl, E., Stiller, B., Zahariadis, T.: Towards the future internet, IOS Press, Amsterdam, The Netherlands (2010)Google Scholar
  25. 25.
    Spertus, E., Sahami, M., Buyukkokten, O.: Evaluating similarity measures: a large-scale study in the orkut social network. In: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05, pp. 678–684. ACM, New York (2005)Google Scholar
  26. 26.
    Strang, D., Soule, S.A.: Diffusion in organizations and social movements: from hybrid corn to poison pills. Ann. Rev. Sociol. 24(1), 265–290 (1998)CrossRefGoogle Scholar
  27. 27.
    Wilkinson, D.M.: Strong regularities in online peer production. In: EC ’08: Proceedings of the 9th ACM Conference on Electronic Commerce, pp. 302–309. ACM, New York (2008)Google Scholar
  28. 28.
    Young, P.H.: Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton University Press, Princeton (1998)Google Scholar

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  • Jose Simoes
    • 1
    Email author
  • Julia Kiseleva
    • 2
  • Elena Sivogolovko
    • 2
  • Boris Novikov
    • 2
  1. 1.Fraunhofer FOKUSBerlinGermany
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations