Advertisement

Introduction

  • Pål LiljebäckEmail author
  • Kristin Y. Pettersen
  • Øyvind Stavdahl
  • Jan Tommy Gravdahl
Part of the Advances in Industrial Control book series (AIC)

Abstract

This introductory text describes the motivation and scope of the research activities underlying this book. In particular, the book has been written by researchers at the Norwegian University of Science and Technology (NTNU) and also researchers from the Norwegian research organisation SINTEF. The research was initiated in 2003 based on the idea of a self-propelled fire hose as a robotic tool to aid human firefighters. The idea was, in other words, to turn a fire hose into a water hydraulic snake robot that can move in extreme environments with the agility of a biological snake. The critical and most significant research challenge of this robotic concept was (and still is) the serpentine propulsion mechanism of this system. Over the last years, the research on snake robots at NTNU and SINTEF has therefore targeted snake robot locomotion in general without concern about the specific application of the robot.

The main goal of this book is to increase our basic understanding of snake robot locomotion. To this end, the focus of the book is primarily directed towards control design. Efficient control strategies are vital to future applications of snake robots, and are also instrumental in the development of these mechanisms.

In this introductory chapter, we also present aspects of biological snakes that are relevant to modelling, implementation, and control of snake robots. Moreover, the chapter provides an extensive overview of the snake robot literature which represents a suitable starting point for research in this area. The chapter ends with a summary of each chapter of the book.

Keywords

Contact Force Nonholonomic Constraint Snake Robot Backbone Curve Cluttered Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andruska, A.M., Peterson, K.S.: Control of a snake-like robot in an elastically deformable channel. IEEE/ASME Trans. Mechatron. 13(2), 219–227 (2008) CrossRefGoogle Scholar
  2. Bauchot, R.: Snakes: a Natural History. Sterling Publishing Company, New York (1994) Google Scholar
  3. Bayraktaroglu, Z.Y.: Snake-like locomotion: experimentations with a biologically inspired wheel-less snake robot. Mech. Mach. Theory 44(3), 591–602 (2008) CrossRefGoogle Scholar
  4. Bayraktaroglu, Z.Y., Blazevic, P.: Understanding snakelike locomotion through a novel push-point approach. J. Dyn. Syst. Meas. Control 127(1), 146–152 (2005) CrossRefGoogle Scholar
  5. Bloch, A.M., Baillieul, J., Crouch, P., Marsden, J.: Nonholonomic Mechanics and Control. Springer, Berlin (2003) zbMATHCrossRefGoogle Scholar
  6. Boyer, F., Porez, M., Khalil, W.: Macro-continuous computed torque algorithm for a three-dimensional eel-like robot. IEEE Trans. Robot. 22(4), 763–775 (2006) CrossRefGoogle Scholar
  7. Brogliato, B.: Nonsmooth Mechanics, 2nd edn. Springer, London (1999) zbMATHCrossRefGoogle Scholar
  8. Brunete, A., Gambao, E., Torres, J.E., Hernando, M.: A 2 DoF servomotor-based module for pipe inspection modular micro-robots. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1329–1334 (2006) CrossRefGoogle Scholar
  9. Burdick, J.W., Radford, J., Chirikjian, G.S.: A sidewinding locomotion gait for hyper-redundant robots. Adv. Robot. 9(3), 195–216 (1995) CrossRefGoogle Scholar
  10. Chen, L., Wang, Y., Ma, S., Li, B.: Studies on lateral rolling locomotion of a snake robot. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 5070–5074 (2004) Google Scholar
  11. Chen, L., Wang, Y., Li, B., Ma, S., Duan, D.: Study on locomotion of a crawling robot for adaptation to the environment. In: Bioinspiration and Robotics: Walking and Climbing Robots, pp. 301–316. I-Tech Education and Publishing, Vienna (2007) Google Scholar
  12. Chen, T.L.T., Liu, S., Yen, J.: A bio-mimetic snake-like robot: sensor based gait control. In: IEEE Workshop on Advanced Robotics and Its Social Impacts, 2008. ARSO 2008, pp. 1–6 (2008) Google Scholar
  13. Chernousko, F.: Snake-like locomotions of multilink mechanisms. J. Vib. Control 9(1–2), 235–256 (2003) MathSciNetzbMATHGoogle Scholar
  14. Chernousko, F.: Modelling of snake-like locomotion. Appl. Math. Comput. 164(2), 415–434 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  15. Chirikjian, G.S.: Theory and applications of hyper-redundant robotic manipulators. Ph.D. thesis, California Institute of Technology, Pasadena, CA (1992) Google Scholar
  16. Chirikjian, G.S.: Design and analysis of some nonanthropomorphic, biologically inspired robots: an overview. J. Robot. Syst. 18(12), 701–713 (2001) zbMATHCrossRefGoogle Scholar
  17. Chirikjian, G.S., Burdick, J.W.: The kinematics of hyper-redundant robot locomotion. IEEE Trans. Robot. Autom. 11(6), 781–793 (1995) CrossRefGoogle Scholar
  18. Crespi, A., Ijspeert, A.J.: Online optimization of swimming and crawling in an amphibious snake robot. IEEE Trans. Robot. 24(1), 75–87 (2008) CrossRefGoogle Scholar
  19. Date, H., Takita, Y.: Control of 3D snake-like locomotive mechanism based on continuum modeling. In: Proc. ASME 2005 Int. Design Engineering Technical Conf., pp. 1351–1359 (2005) Google Scholar
  20. Date, H., Takita, Y.: Adaptive locomotion of a snake like robot based on curvature derivatives. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Diego, CA, USA, pp. 3554–3559 (2007) Google Scholar
  21. Date, H., Hoshi, Y., Sampei, M.: Locomotion control of a snake-like robot based on dynamic manipulability. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems (2000) Google Scholar
  22. Date, H., Hoshi, Y., Sampei, M., Shigeki, N.: Locomotion control of a snake robot with constraint force attenuation. In: Proc. American Control Conf., pp. 113–118 (2001a) Google Scholar
  23. Date, H., Sampei, M., Nakaura, S.: Control of a snake robot in consideration of constraint force. In: Proc. IEEE Int. Conf. Control Applications, pp. 966–971 (2001b) Google Scholar
  24. Dowling, K.: Limbless locomotion: learning to crawl. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 4 (1999) Google Scholar
  25. Dowling, K.J.: Limbless locomotion: learning to crawl with a snake robot. Ph.D. thesis, The Robotics Institute, Carnegie Mellon University (1997) Google Scholar
  26. Endo, G., Togawa, K., Hirose, S.: Study on self-contained and terrain adaptive active cord mechanism. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 3, pp. 1399–1405 (1999) Google Scholar
  27. Fjerdingen, S.A., Mathiassen, J.R., Schumann-Olsen, H., Kyrkjebø, E.: Adaptive snake robot locomotion: a benchmarking facility for experiments. In: European Robotics Symp. 2008, vol. 44, pp. 13–22 (2008) CrossRefGoogle Scholar
  28. Fjerdingen, S.A., Liljebäck, P., Transeth, A.A.: A snake-like robot for internal inspection of complex pipe structures (PIKo). In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, St. Louis, MO, USA, pp. 5665–5671 (2009) Google Scholar
  29. Gao, J., Gao, X., Zhu, W., Zhu, J., Wei, B.: Design and research of a new structure rescue snake robot with all body drive system. In: IEEE Int. Conf. Mechatronics and Automation, pp. 119–124 (2008) CrossRefGoogle Scholar
  30. Gonzalez-Gomez, J., Zhang, H., Boemo, E.: Locomotion principles of 1D topology pitch and pitch-yaw-connecting modular robots. In: Bioinspiration and Robotics: Walking and Climbing Robots, pp. 403–428. I-Tech Education and Publishing, Vienna (2007) Google Scholar
  31. Gonzalez-Gomez, J., Gonzalez-Quijano, J., Zhang, H., Abderrahim, M.: Toward the sense of touch in snake modular robots for search and rescue operations. In: Proc. ICRA 2010 Workshop “Modular Robots: State of the Art”, pp. 63–68 (2010) Google Scholar
  32. Grabec, I.: Control of a creeping snake-like robot. In: Proc. 7th Int. Workshop on Advanced Motion Control, pp. 526–531 (2002) Google Scholar
  33. Granosik, G., Borenstein, J., Hansen, M.G.: Serpentine robots for industrial inspection and surveillance. In: Industrial Robotics: Programming, Simulation and Applications, pp. 633–662. Pro Literatur Verlag, Mammendorf (2006) Google Scholar
  34. Gray, J.: The mechanism of locomotion in snakes. J. Exp. Biol. 23(2), 101–120 (1946) Google Scholar
  35. Greenfield, A., Rizzi, A.A., Choset, H.: Dynamic ambiguities in frictional rigid-body systems with application to climbing via bracing. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 1947–1952 (2005) CrossRefGoogle Scholar
  36. Hara, M., Satomura, S., Fukushima, H., Kamegawa, T., Igarashi, H., Matsuno, F.: Control of a snake-like robot using the screw drive mechanism. In: IEEE Int. Conf. Robotics and Automation, pp. 3883–3888 (2007) Google Scholar
  37. Hatton, R.L., Choset, H.: Approximating displacement with the body velocity integral. In: Proc. Robotics: Science and Systems (2009a) Google Scholar
  38. Hatton, R.L., Choset, H.: Generating gaits for snake robots by annealed chain fitting and keyframe wave extraction. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 840–845 (2009b) Google Scholar
  39. Hatton, R.L., Choset, H.: Sidewinding on slopes. In: IEEE Int. Conf. Robotics and Automation, pp. 691–696 (2010) CrossRefGoogle Scholar
  40. Hicks, G., Ito, K.: A method for determination of optimal gaits with application to a snake-like serial-link structure. IEEE Trans. Autom. Control 50(9), 1291–1306 (2005) MathSciNetCrossRefGoogle Scholar
  41. Hicks, G.P.: Modeling and control of a snake-like serial-link structure. Ph.D. thesis, North Carolina State University (2003) Google Scholar
  42. Hirose, S.: Biologically Inspired Robots: Snake-Like Locomotors and Manipulators. Oxford University Press, Oxford (1993) Google Scholar
  43. Hu, D., Nirody, J., Scott, T., Shelley, M.: The mechanics of slithering locomotion. In: Proc. National Academy of Sciences, USA, vol. 106, pp. 10081–10085 (2009) Google Scholar
  44. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315(5817), 1416–1420 (2007) CrossRefGoogle Scholar
  45. Ishikawa, M.: Iterative feedback control of snake-like robot based on principal fiber bundle modeling. Int. J. Adv. Mechatron. Syst. 1(3), 175–182 (2009) CrossRefGoogle Scholar
  46. Ishikawa, M., Owaki, K., Shinagawa, M., Sugie, T.: Control of snake-like robot based on nonlinear controllability analysis. In: IEEE Int. Conf. Control Applications, pp. 1134–1139 (2010) Google Scholar
  47. Jones, B.A., Walker, I.D.: Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006) CrossRefGoogle Scholar
  48. Kamegawa, T., Yarnasaki, T., Igarashi, H., Matsuno, F.: Development of the snake-like rescue robot ‘Kohga’. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 5, pp. 5081–5086 (2004) Google Scholar
  49. Kamegawa, T., Harada, T., Gofuku, A.: Realization of cylinder climbing locomotion with helical form by a snake robot with passive wheels. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 3067–3072 (2009) Google Scholar
  50. Kane, T.R., Lecison, D.A.: Locomotion of snakes: a mechanical ‘explanation’. Int. J. Solids Struct. 37(41), 5829–5837 (2000) zbMATHCrossRefGoogle Scholar
  51. Kanso, E., Marsden, J.E., Rowley, C.W., Melli-Huber, J.B.: Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Sci. 15, 255–289 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  52. Kelly, S.D., Murray, R.M.: Geometric phases and robotic locomotion. J. Robot. Syst. 12(6), 417–431 (1995) zbMATHCrossRefGoogle Scholar
  53. Kimura, H., Hirose, S.: Development of Genbu: active wheel passive joint articulated mobile robot. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 1, pp. 823–828 (2002) Google Scholar
  54. Krishnaprasad, P.S., Tsakiris, D.P.: G-snakes: nonholonomic kinematic chains on lie groups. In: Proc. 33rd IEEE Conf. Decision and Control, Lake Buena Vista, FL, USA, vol. 3, pp. 2955–2960 (1994) Google Scholar
  55. Kulali, G., Gevher, M., Erkmen, A., Erkmen, I.: Intelligent gait synthesizer for serpentine robots. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 2, pp. 1513–1518 (2002) Google Scholar
  56. Kuwada, A., Wakimoto, S., Suzumori, K., Adomi, Y.: Automatic pipe negotiation control for snake-like robot. In: Proc. IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, pp. 558–563 (2008) CrossRefGoogle Scholar
  57. Li, J., Shan, J.: Passivity control of underactuated snake-like robots. In: Proc. 7th World Congress on Intelligent Control and Automation, pp. 485–490 (2008) Google Scholar
  58. Liljebäck, P., Stavdahl, Ø., Beitnes, A.: SnakeFighter—development of a water hydraulic fire fighting snake robot. In: Proc. IEEE Int. Conf. Control, Automation, Robotics, and Vision (ICARCV), Singapore (2006) Google Scholar
  59. Linnemann, R., Paap, K.L., Klaassen, B., Vollmer, J.: Motion control of a snakelike robot. In: Proc. Third European Workshop on Advanced Mobile Robots, pp. 1–8 (1999) CrossRefGoogle Scholar
  60. Lipkin, K., Brown, I., Choset, H., Rembisz, J., Gianfortoni, P., Naaktgeboren, A.: Differentiable and piecewise differentiable gaits for snake robots. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Diego, CA, USA, pp. 1864–1869 (2007) Google Scholar
  61. Ma, S.: Analysis of snake movement forms for realization of snake-like robots. In: Proc. IEEE Int. Conf. Robotics and Automation, Detroit, MI, USA, vol. 4, pp. 3007–3013 (1999) Google Scholar
  62. Ma, S.: Analysis of creeping locomotion of a snake-like robot. Adv. Robot. 15(2), 205–224 (2001) CrossRefGoogle Scholar
  63. Ma, S., Tadokoro, N.: Analysis of creeping locomotion of a snake-like robot on a slope. Auton. Robots 20, 15–23 (2006) CrossRefGoogle Scholar
  64. Ma, S., Araya, H., Li, L.: Development of a creeping snake-robot. In: Proc. IEEE Int. Symp. Computational Intelligence in Robotics and Automation, pp. 77–82 (2001) Google Scholar
  65. Ma, S., Ohmameuda, Y., Inoue, K., Li, B.: Control of a 3-dimensional snake-like robot. In: Proc. IEEE Int. Conf. Robotics and Automation, Taipei, Taiwan, vol. 2, pp. 2067–2072 (2003) Google Scholar
  66. Ma, S., Ohmameuda, Y., Inoue, K.: Dynamic analysis of 3-dimensional snake robots. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 767–772 (2004) Google Scholar
  67. Masayuki, A., Takayama, T., Hirose, S.: Development of “Souryu-III”: connected crawler vehicle for inspection inside narrow and winding spaces. In: Proc. IEEE Int. Conf. Intelligent Robots and Systems, vol. 1, pp. 52–57 (2004) Google Scholar
  68. Matsuno, F., Mogi, K.: Redundancy controllable system and control of snake robots based on kinematic model. In: Proc. IEEE Int. Conf. Decision and Control, vol. 5, pp. 4791–4796 (2000) Google Scholar
  69. Matsuno, F., Sato, H.: Trajectory tracking control of snake robots based on dynamic model. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 3029–3034 (2005) CrossRefGoogle Scholar
  70. Matsuno, F., Suenaga, K.: Control of redundant 3D snake robot based on kinematic model. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2061–2066 (2003) Google Scholar
  71. Mattison, C.: The Encyclopedia of Snakes. Cassell, London (2002) Google Scholar
  72. McIsaac, K.A., Ostrowski, J.P.: Motion planning for anguilliform locomotion. IEEE Trans. Robot. Autom. 19(4), 637–652 (2003a) CrossRefGoogle Scholar
  73. McIsaac, K.A., Ostrowski, J.P.: A framework for steering dynamic robotic locomotion systems. Int. J. Robot. Res. 22(2), 83–97 (2003b) CrossRefGoogle Scholar
  74. McKenna, J.C., Anhalt, D.J., Bronson, F.M., Brown, H.B., Schwerin, M., Shammas, E., Choset, H.: Toroidal skin drive for snake robot locomotion. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 1150–1155 (2008) Google Scholar
  75. Mehta, V., Brennan, S., Gandhi, F.: Experimentally verified optimal serpentine gait and hyperredundancy of a rigid-link snake robot. IEEE Trans. Robot. 24(2), 348–360 (2008) CrossRefGoogle Scholar
  76. Melli, J.B., Rowley, C.W., Rufat, D.S.: Motion planning for an articulated body in a perfect planar fluid. SIAM J. Appl. Dyn. Syst. 5(4), 650–669 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  77. Miller, G.: Snake robots for search and rescue. In: Neurotechnology for Biomimetic Robots, pp. 271–284. MIT Press, Cambridge (2002) Google Scholar
  78. Moon, B.R., Gans, C.: Kinematics, muscular activity and propulsion in gopher snakes. J. Exp. Biol. 201, 2669–2684 (1998) Google Scholar
  79. Morgansen, K.A., Duidam, V., Mason, R.J., Burdick, J.W., Murray, R.M.: Nonlinear control methods for planar carangiform robot fish locomotion. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, pp. 427–434 (2001) Google Scholar
  80. Morgansen, K.A., Vela, P.A., Burdick, J.W.: Trajectory stabilization for a planar carangiform robot fish. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, pp. 756–762 (2002) Google Scholar
  81. Morgansen, K.A., Triplett, B.I., Klein, D.J.: Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Trans. Robot. 23(6), 1184–1199 (2007) CrossRefGoogle Scholar
  82. Mori, M., Hirose, S.: Three-dimensional serpentine motion and lateral rolling by active cord mechanism ACM-R3. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 829–834 (2002) CrossRefGoogle Scholar
  83. Murugendran, B., Transeth, A.A., Fjerdingen, S.A.: Modeling and path-following for a snake robot with active wheels. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 3643–3650 (2009) Google Scholar
  84. Nilsson, M.: Ripple and roll: slip-free snake robot locomotion. In: Proc. Mechatronical Computer Systems for Perception and Action, Piza, Italy (1997) Google Scholar
  85. Nilsson, M.: Snake robot—free climbing. IEEE Control Syst. Mag. 18(1), 21–26 (1998) CrossRefGoogle Scholar
  86. Nilsson, M.: Serpentine locomotion on surfaces with uniform friction. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1751–1755 (2004) Google Scholar
  87. Ohashi, H., Yamada, T., Hirose, S.: Loop forming snake-like robot ACM-R7 and its Serpenoid Oval control. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 413–418 (2010) Google Scholar
  88. Ohno, H., Hirose, S.: Design of slim slime robot and its gait of locomotion. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 2, pp. 707–715 (2001) Google Scholar
  89. Ostrowski, J., Burdick, J.: The geometric mechanics of undulatory robotic locomotion. Int. J. Robot. Res. 17(7), 683–701 (1998) CrossRefGoogle Scholar
  90. Ostrowski, J.P.: The mechanics and control of undulatory robotic locomotion. Ph.D. thesis, California Institute of Technology (1996) Google Scholar
  91. Paap, K.L., Kirchner, F., Klaassen, B.: Motion control scheme for a snake-like robot. In: Proc. IEEE Int. Symp. Computational Intelligence in Robotics and Automation, pp. 59–63 (1999) Google Scholar
  92. Poi, G., Scarabeo, C., Allotta, B.: Traveling wave locomotion hyper-redundant mobile robot. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 1, pp. 418–423 (1998) Google Scholar
  93. Prautsch, P., Mita, T.: Control and analysis of the gait of snake robots. In: Proc. IEEE Int. Conf. Control Applications, Kohala Coast, HI, USA, pp. 502–507 (1999) Google Scholar
  94. Prautsch, P., Mita, T., Iwasaki, T.: Analysis and control of a gait of snake robot. Trans. Inst. Electr. Eng. Jpn., Sect. D 120-D(3), 372–381 (2000) Google Scholar
  95. Rincon, D.M., Sotelo, J.: Ver-Vite: dynamic and experimental analysis for inchwormlike biomimetic robots. IEEE Robot. Autom. Mag. 10(4), 53–57 (2003) CrossRefGoogle Scholar
  96. Saito, M., Fukaya, M., Iwasaki, T.: Serpentine locomotion with robotic snakes. IEEE Control Syst. Mag. 22(1), 64–81 (2002) CrossRefGoogle Scholar
  97. Sato, T., Watanabe, W., Ishiguro, A.: An adaptive decentralized control of a serpentine robot based on the discrepancy between body, brain and environment. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 709–714 (2010) Google Scholar
  98. Sfakiotakis, M., Tsakiris, D.: Biomimetic centering for undulatory robots. Int. J. Robot. Res. 26, 1267–1282 (2007) CrossRefGoogle Scholar
  99. Shan, Y., Koren, Y.: Design and motion planning of a mechanical snake. IEEE Trans. Syst. Man Cybern. 23(4), 1091–1100 (1993) CrossRefGoogle Scholar
  100. Shan, Y., Koren, Y.: Obstacle accommodation motion planning. IEEE Trans. Robot. Autom. 11(1), 36–49 (1995) CrossRefGoogle Scholar
  101. Shapiro, A., Greenfield, A., Choset, H.: Frictional compliance model development and experiments for snake robot climbing. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 574–579 (2007) CrossRefGoogle Scholar
  102. Taal, S.R., Yamada, H., Hirose, S.: 3 axial force sensor for a semi-autonomous snake robot. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 4057–4062 (2009) Google Scholar
  103. Tanaka, M., Matsuno, F.: Control of 3-dimensional snake robots by using redundancy. In: IEEE Int. Conf. Robotics and Automation, pp. 1156–1161 (2008a) CrossRefGoogle Scholar
  104. Tanaka, M., Matsuno, F.: Modeling and control of a snake robot with switching constraints. In: SICE Annual Conf. (2008b) Google Scholar
  105. Tanaka, M., Matsuno, F.: A study on sinus-lifting motion of a snake robot with switching constraints. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2270–2275 (2009) Google Scholar
  106. Tanev, I., Ray, T., Buller, A.: Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot. IEEE Trans. Robot. 21(4), 632–645 (2005) CrossRefGoogle Scholar
  107. Togawa, K., Mori, M., Hirose, S.: Study on three-dimensional active cord mechanism: development of ACM-R2. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 3, pp. 2242–2247 (2000) Google Scholar
  108. Transeth, A.A., van de Wouw, N., Pavlov, A., Hespanha, J.P., Pettersen, K.Y.: Tracking control for snake robot joints. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, San Diego, CA, USA, pp. 3539–3546 (2007b) Google Scholar
  109. Transeth, A.A., Leine, R.I., Glocker, C., Pettersen, K.Y.: 3D snake robot motion: non-smooth modeling, simulations, and experiments. IEEE Trans. Robot. 24(2), 361–376 (2008a) CrossRefGoogle Scholar
  110. Transeth, A.A., Leine, R.I., Glocker, C., Pettersen, K.Y., Liljebäck, P.: Snake robot obstacle aided locomotion: modeling, simulations, and experiments. IEEE Trans. Robot. 24(1), 88–104 (2008b) CrossRefGoogle Scholar
  111. Transeth, A.A., Pettersen, K.Y., Liljebäck, P.: A survey on snake robot modeling and locomotion. Robotica 27, 999–1015 (2008c) CrossRefGoogle Scholar
  112. Transeth, A.A., Liljebäck, P., Fjerdingen, S., Kyrkjebø, E., Mugaas, T.: New possibilities—next generation robotic systems for inspection and maintenance operations. In: Proc. EuroMaintenance, Fiera di Verona, Italy, pp. 229–232 (2010) Google Scholar
  113. Ute, J., Ono, K.: Fast and efficient locomotion of a snake robot based on self-excitation principle. In: Proc. 7th Int. Workshop on Advanced Motion Control, pp. 532–539 (2002) Google Scholar
  114. Vela, P.A., Morgansen, K.A., Burdick, J.W.: Underwater locomotion from oscillatory shape deformations. In: Proc. IEEE Conf. Decision and Control, vol. 2, pp. 2074–2080 (2002a) Google Scholar
  115. Wang, Z., Ma, S., Li, B., Wang, Y.: Stability and adaptability of passive creeping of a snake-like robot. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 395–400 (2010) Google Scholar
  116. Watanabe, K., Iwase, M., Hatakeyama, S., Maruyama, T.: Control strategy for a snake-like robot based on constraint force and verification by experiment. In: IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 1618–1623 (2008) Google Scholar
  117. Wiriyacharoensunthorn, P., Laowattana, S.: Analysis and design of a multi-link mobile robot (serpentine). In: Proc. IEEE Int. Conf. Robotics, Intelligent Systems and Signal Processing, vol. 2, pp. 694–699 (2002) Google Scholar
  118. Worst, R., Linnemann, R.: Construction and operation of a snake-like robot. In: Proc. IEEE Int. Joint Symp. Intelligence and Systems, Rockville, MD, USA, pp. 164–169 (1996) CrossRefGoogle Scholar
  119. Wright, C., Johnson, A., Peck, A., McCord, Z., Naaktgeboren, A., Gianfortoni, P., Gonzalez-Rivero, M., Hatton, R., Choset, H.: Design of a modular snake robot. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 2609–2614 (2007) Google Scholar
  120. Yamada, H., Hirose, S.: Study on the 3D shape of active cord mechanism. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 2890–2895 (2006a) Google Scholar
  121. Yamada, H., Hirose, S.: Development of practical 3-dimensional active cord mechanism ACM-R4. J. Robot. Mechatron. 18(3), 1–7 (2006b) Google Scholar
  122. Yamada, H., Hirose, S.: Study of active cord mechanism—generalized basic equations of the locomotive dynamics of acm and analysis of sinus lifting. J. Robot. Soc. Jpn. 26(7), 801–811 (2008). In Japanese CrossRefGoogle Scholar
  123. Yamada, H., Hirose, S.: Study of a 2-DOF joint for the small active cord mechanism. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 3827–3832 (2009) Google Scholar
  124. Yamada, H., Hirose, S.: Steering of pedal wave of a snake-like robot by superposition of curvatures. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp. 419–424 (2010) Google Scholar
  125. Yamada, H., Chigisaki, S., Mori, M., Takita, K., Ogami, K., Hirose, S.: Development of amphibious snake-like robot ACM-R5. In: Proc. 36th Int. Symp. Robotics (2005) Google Scholar
  126. Yamakita, M., Hashimoto, M., Yamada, T.: Control of locomotion and head configuration of 3D snake robot (SMA). In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 2, pp. 2055–2060 (2003) Google Scholar
  127. Ye, C., Ma, S., Li, B., Wang, Y.: Turning and side motion of snake-like robot. In: Proc. IEEE Int. Conf. Robotics and Automation, vol. 5, pp. 5075–5080 (2004a) Google Scholar
  128. Ye, C., Ma, S., Li, B., Wang, Y.: Locomotion control of a novel snake-like robot. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, vol. 1, pp. 925–930 (2004b) Google Scholar
  129. Ye, C., Ma, S., Li, B., Liu, H., Wang, H.: Development of a 3D snake-like robot: Perambulator-II. In: Int. Conf. Mechatronics and Automation, pp. 117–122 (2007) CrossRefGoogle Scholar
  130. Yim, M.: New locomotion gaits. In: Proc. IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2508–2514 (1994) Google Scholar
  131. Yim, M., Duff, D.G., Roufas, K.D.: Walk on the wild side. IEEE Robot. Autom. Mag. 9(4), 49–53 (2002) CrossRefGoogle Scholar
  132. Yu, S., Ma, S., Li, B., Wang, Y.: Analysis of helical gait of a snake-like robot. In: IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, pp. 1183–1188 (2008) Google Scholar
  133. Yu, S., Ma, S., Li, B., Wang, Y.: An amphibious snake-like robot: design and motion experiments on ground and in water. In: Int. Conf. Information and Automation, pp. 500–505 (2009) CrossRefGoogle Scholar
  134. Zarrouk, D., Sharf, I., Shoham, M.: Analysis of earthworm-like robotic locomotion on compliant surfaces. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 1574–1579 (2010) Google Scholar
  135. Zuo, Z., Wang, Z., Li, B., Ma, S.: Serpentine locomotion of a snake-like robot in water environment. In: IEEE Int. Conf. Robotics and Biomimetics, pp. 25–30 (2008) Google Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • Pål Liljebäck
    • 1
    • 2
    Email author
  • Kristin Y. Pettersen
    • 2
  • Øyvind Stavdahl
    • 2
  • Jan Tommy Gravdahl
    • 2
  1. 1.Applied CyberneticsSINTEF ICTTrondheimNorway
  2. 2.Department of Engineering CyberneticsNorwegian University of Science & TechnologyTrondheimNorway

Personalised recommendations