Should Music Interaction Be Easy?

  • James McDermott
  • Toby Gifford
  • Anders Bouwer
  • Mark Wagy
Part of the Springer Series on Cultural Computing book series (SSCC)


A fundamental assumption in the fields of human-computer interaction and usability studies is that interfaces should be designed for ease of use, with a few exceptions such as the trade-off with long-term power. In this chapter it is argued that in music interaction the situation is far more complex, with social, technical, artistic, and psychological reasons why difficulty is in some cases a good thing, and in other cases a necessary evil. Different aspects of static and time-varying difficulty in music interaction are categorised. Some specific areas in which difficulty seems to be inextricably linked to positive aspects of music interaction are described. This is followed by discussion of some areas in which difficulty is undesirable and, perhaps, avoidable. Examples are drawn from music interaction research in general and from other chapters of this book in particular.


  1. Apple. (2011). GarageBand. Accessed 12 Sept 2011.
  2. Armstrong, N. (2006). An enactive approach to digital musical instrument design. PhD thesis, Princeton University, Princeton.Google Scholar
  3. AxCent Tuning Systems. (2013). Accessed 21 Jan 2013.
  4. Bills, A. G. (1934). The curve of learning. New York: Longmans, Green and Co.Google Scholar
  5. Boese, C. (2006). Usability of accordions. Interaction design association web forum. Accessed 11 Sept 2011.
  6. Bouwer, A., Holland, S., & Dalgleish, M. (2013a). The Haptic Bracelets: Learning multi-limb rhythm skills from haptic stimuli while reading. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human-computer interaction (pp. 101–122). London: Springer. ISBN 978-1-4471-2989-9.Google Scholar
  7. Bouwer, A., Holland, S., & Dalgleish, M. (2013b). Song walker harmony space: Embodied interaction design for complex musical skills. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human-computer interaction (pp. 207–221). London: Springer. ISBN 978-1-4471-2989-9.Google Scholar
  8. Bozkurt, B. (2011). Otomata. Accessed 20 Nov 2011.
  9. Brandao, M., Wiggins, G., & Pain, H. (1999). Computers in music education. In Proceedings of the AISB’99 symposium on musical creativity (pp. 82–88).Google Scholar
  10. Collins, N. (2003). Generative music and laptop performance. Contemporary Music Review, 22(4), 67–79.CrossRefGoogle Scholar
  11. Cook, J. (1998). Mentoring, metacognition and music: Interaction analyses and implications for intelligent learning environments. International Journal of Artificial Intelligence in Education, 9, 45–87.MATHGoogle Scholar
  12. Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience. New York: Harper Collins.Google Scholar
  13. Delzell, J. K., & Leppla, D. A. (1992). Gender association of musical instruments and preferences of fourth-grade students for selected instruments. Journal of Research in Music Education, 40(2), 93–103. doi:10.2307/3345559.CrossRefGoogle Scholar
  14. Eno, B., & Chilvers, P. (2009). Bloom. Accessed 20 Nov 2011.
  15. Gentner, D., & Nielsen, J. (1996). The Anti-Mac interface. Communications of the ACM, 39(8), 70–82. Accessed 9 Sept 2011.
  16. Gifford, T. (2013). Appropriate and complementary rhythmic improvisation in an interactive music system. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human-computer interaction (pp. 271–286). London: Springer. ISBN 978-1-4471-2989-9.Google Scholar
  17. Gillespie, R., & O’Modrain, S. (2011). Embodied cognition as a motivating perspective for haptic interaction design: A position paper. In World haptics conference. Istanbul: IEEE.Google Scholar
  18. Gruson, L. M. (1988). Rehearsal skill and musical competence: Does practice make perfect? In J. A. Sloboda (Ed.), Generative processes in music: The psychology of performance, improvisation, and composition (pp. 91–112). New York: Oxford University Press.Google Scholar
  19. Harmonix Music Systems. (2005). Guitar Hero. Sunnyvale: Red Octane.Google Scholar
  20. Harmonix Music Systems. (2007). Rock Band. Redwood City: Electronic Arts.Google Scholar
  21. Hedegaard, M. (2005). The zone of proximal development as basis for instruction. In H. Daniels (Ed.), An introduction to Vygotsky (pp. 227–252). New York: Routledge.Google Scholar
  22. Hofstadter, D. R. (1979). Gödel, Escher, Bach: An eternal golden braid. New York: Penguin Books.Google Scholar
  23. Holland, S. (2000). Artificial intelligence in music education: A critical review. In E. Miranda (Ed.), Readings in music and artificial intelligence, contemporary music studies (Vol. 20, pp. 239–274). Amsterdam: Harwood Academic Publishers.Google Scholar
  24. Hornecker, E. (2011). The role of physicality in tangible and embodied interactions. Interactions, 18(2), 19–23.CrossRefGoogle Scholar
  25. Hughes, C., Wermelinger, M., & Holland, S. (2011). Sound spheres: The heuristic design and evaluation of a non-contact finger-tracking virtual musical instrument. In Proceedings of the 8th sound and music computing conference, Padova, Italy. Accessed 8 Mar 2012.
  26. Hunt, A., & Hermann, T. (2011). Interactive sonification. In T. Hermann, A. Hunt, & J. G. Neuhoff (Eds.), The sonification handbook. Berlin: Logos Verlag.Google Scholar
  27. Johnson, R., Van der Linden, J., & Rogers. Y. (2011). Prototyping for the wild: Reflections on the design of MuSense, a lightweight wearable practice aid for the violin. BCS HCI workshop “When words fail: What can music interaction tell us about HCI?” 4 July 2011. Northumbria University, Newcastle upon Tyne. Accessed 8 Mar 2012.
  28. Jones, M. K. (1989). Human-computer interaction: A design guide. Englewood Cliffs: Educational Technology.Google Scholar
  29. Jordà, S., Geiger, G., Alonso, M., & Kaltenbrunner, M. (2007). The reacTable: Exploring the synergy between live music performance and tabletop tangible interfaces. In Proceedings of the international conference Tangible and Embedded Interaction (TEI07).Google Scholar
  30. Karlstrom, P. (2007). Existential phenomenology and design—Why “ready-to-hand” is not enough. Unpublished, available: Accessed 9 Sept 2011.
  31. Kock, S.V., & Bouwer, A. (2011). Towards wearable support for nomadic musicians. Paper presented at workshop “When words fail: What can music interaction tell us about HCI?” at the British conference on human-computer interaction, 4 July 2011, Newcastle, UK.Google Scholar
  32. Krefeld, V., & Waisvisz, M. (1990). The hand in the web: An interview with Michel Waisvisz. Computer Music Journal, 14(2), 28–33.CrossRefGoogle Scholar
  33. Leman, M. (2008). Embodied music cognition and mediation technology. Cambridge: The MIT Press.Google Scholar
  34. Levitin, D. (2006). This is your brain on music: The science of a human obsession. East Rutherford: Penguin Putnam.Google Scholar
  35. Massey, A. (2003). Music and the arts: usability in fact and as metaphor. Accessed 12Sept 2011.
  36. McDermott, J., Griffith, N. J. L., & O’Neill, M. (2007). Evolutionary GUIs for sound synthesis. In Applications of evolutionary computing. Berlin/Heidelberg: Springer.Google Scholar
  37. Miller, K. (2009). Schizophonic performance: Guitar Hero, Rock Band, and Virtual Virtuosity. Journal of the Society for American Music, 3(4), 395–429. doi:10.1017/S1752196309990666.CrossRefGoogle Scholar
  38. Nakamura, J., & Csikszentmihalyi, M. (2002). The concept of flow. In C. R. Snyder (Ed.), Handbook of positive psychology (pp. 89–105). New York: Oxford University Press.Google Scholar
  39. National Council for Curriculum and Assessment (Ireland). (2011). Arts education: Music. Accessed 12 Sept 2011.
  40. Nielsen, J. (2003). Usability 101: Introduction to usability. Accessed 9 Sept 2011.
  41. Nielsen, J. (2006). Progressive disclosure. Accessed 9 Sept 2011.
  42. Pachet, F. (2003). The continuator: Musical interaction with style. Journal of New Music Research, 32(3), 333–341.Google Scholar
  43. Paine, G. (2009). Gesture and morphology in laptop music performance. In R. Dean (Ed.), The Oxford handbook of computer music (pp. 214–232). New York: Oxford University Press.Google Scholar
  44. Ritter, F. E., & Schooler, L. J. (2002). The learning curve. In: International encyclopedia of the social and behavioral sciences (pp. 8602–8605). Amsterdam: Pergamon.
  45. Rowe, R. (2001). Machine musicianship. Cambridge, Massachusetts: MIT Press.Google Scholar
  46. Ruso, B., Renninger, L. A., & Atzwanger, K. (2003). Human habitat preferences: A generative territory for evolutionary aesthetics research. In E. Voland & K. Grammer (Eds.), Evolutionary aesthetics (pp. 279–294). Heidelberg/Berlin/NewYork: Springer.Google Scholar
  47. Seago, A. (2013). A new interaction strategy for musical timbre design. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human-computer interaction (pp. 153–170). London: Springer. ISBN 978-1-4471-2989-9.Google Scholar
  48. Smith, M., Burke, C., Draper, S., & Potter, C. (2008). The energy cost of rock drumming: a case study. European College of Sport Science (ECSS) 13th annual Congress, July 2008, Estoril, Portugal.Google Scholar
  49. Smule. (2008). iPhone Ocarina. Accessed 20 Nov 2011.
  50. Stowell, D., & McLean, A. (2013). Live music-making: A rich open task requires a rich open interface. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human-computer interaction (pp. 139–152). London: Springer. ISBN 978-1-4471-2989-9.Google Scholar
  51. Stuart, C. (2003). The object of performance: Aural performativity in contemporary laptop music. Contemporary Music Review, 22(4), 59–65.CrossRefGoogle Scholar
  52. Suthers, D. D. (2001). Towards a systematic study of representational guidance for collaborative learning discourse. Journal of Universal Computer Science, 7(3).Google Scholar
  53. Swift, B. (2013). Chasing a feeling: Experience in computer supported jamming. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human-computer interaction (pp. 85–100). London: Springer. ISBN 978-1-4471-2989-9.Google Scholar
  54. Tammelin, O, (1999). Jeskola Buzz. Accessed 12 Sept 2011.
  55. Tanaka, A. (2000). Musical performance practice on sensor-based instruments. In Trends in gestural control of music. Centre Pompidou: IRCAM.Google Scholar
  56. Thornhill, R. (2003). Darwinian aesthetics informs traditional aesthetics. In E. Voland & K. Grammer (Eds.), Evolutionary aesthetics (pp. 9–35). Berlin: Springer.Google Scholar
  57. TOPLAP. (2011). Accessed 12 Sept 2011.
  58. Van Nimwegen, C., van Oostendorp, H., & Schijf, H. J. M. (2004). Externalization vs. Internalization: The influence on problem solving performance. In Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT’04). Piscataway: IEEE.Google Scholar
  59. Wagner, R. (1830). The virtuoso and the artist (trans. Ellis, W.). Accessed 9 Sept 2011.
  60. Wallis, I., Ingalls, T., Campana, E., & Vuong, C. (2013). Amateur musicians, long-term engagement, and HCI. In S. Holland, K. Wilkie, P. Mulholland, & A. Seago (Eds.), Music and human-computer interaction (pp. 49–66). London: Springer. ISBN 978-1-4471-2989-9.Google Scholar
  61. Wilson, W. (2002). Six views of embodied cognition. Psychonomic Bulletin and Review, 9(4), 625–636.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  • James McDermott
    • 1
  • Toby Gifford
    • 2
  • Anders Bouwer
    • 3
  • Mark Wagy
    • 4
  1. 1.Evolutionary Design and Optimization Group, Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Queensland Conservatorium of MusicGriffith UniversityBrisbaneAustralia
  3. 3.Intelligent Systems Lab Amsterdam (ISLA), Informatics Institute, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations