Event Detection Based on Call Detail Records

Abstract

In this paper we propose the model of the inhomogeneous Poisson for call frequency and inhomogeneous exponential distribution for call durations to detect events based on mobile phone call detail records. The maximum likelihood method is used to estimate the rate of frequency and call duration. This work is useful for enhancing homeland security, detecting unwanted calls (e.g., spam) and commercial purposes. For validation of our results, we used actual call logs of 100 users collected at MIT by the Reality Mining Project group for a period of 8 months. The experimental results show that our model achieves good performance with high accuracy.

Keywords

Event detection Call detail records Inhomogeneous Poisson Inhomogeneous exponential distribution 

References

  1. 1.
    Brants, T., Chen, F.: A system for new event detection. In: Proceedings of International ACM SIGIR Conference, pp. 330–337 (2003) Google Scholar
  2. 2.
    Chen, F., Farahat, A., Brants, T.: Story link detection and new event detection are asymmetric. In: Human Language Technology Conference (HLT-NAACL) (2003) Google Scholar
  3. 3.
    Kumaran, G., Allan, J.: Text classification and named entities for new event detection. In: Proceedings of international ACM SIGIR Conference, pp. 297–304 (2004) Google Scholar
  4. 4.
    Li, X., Croft, B.W.: Novelty detection based on sentence level patterns. In: Proceedings of ACM CIKM, pp. 744–751 (2005) Google Scholar
  5. 5.
    Li, Z., Wang, B., Li, M.: A probabilistic model for retrospective news event detection. In: Proceedings of International SIGIR Conference, pp. 106–113 (2005) Google Scholar
  6. 6.
    Zhao, Q., Mitra, P.: Event detection and visualization for social text streams. In: Proceedings of International Conference on Weblogs and Social Media (ICWSM) (2007) Google Scholar
  7. 7.
    He, Q., Chang, K., Lim, E.P.: A model for anticipatory event detection. In: Proceedings of the 25th International Conference on Conceptual Modeling (ER). LNCS, vol. 4215, pp. 168–181. Springer, Berlin (2006) Google Scholar
  8. 8.
    He, Q., Chang, K., Lim, E.P.: Anticipatory event detection via sentence classification. In: Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, pp. 1143–1148 (2006) Google Scholar
  9. 9.
    Luo, G., Tang, C., Yu, P.: Resource-adaptive real-time new event detection. In: Proceedings of International ACM SIGMOD Conference on Management of Data (2007) Google Scholar
  10. 10.
    Guralnik, V., Srivastava, J.: Event detection from time series data. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–42. ACM Press, New York (1999) CrossRefGoogle Scholar
  11. 11.
    Kleinberg, J.: Bursty and hierarchical structure in streams. In: Proceedings of the Eigth ACM SIGKDD International Conference Knowledge Discovery and Data Mining, pp. 91–101. ACM Press, New York (2002) CrossRefGoogle Scholar
  12. 12.
    Keogh, E., Lonardi, S., Chiu, B.Y.: Finding surprising patterns in a time series database in linear time and space. In: Proceedings of the Eigth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 550–556. ACM Press, New York (2002) CrossRefGoogle Scholar
  13. 13.
    Salmenkivi, M., Mannila, H.: Using Markov chain Cityplace Monte Carlo and dynamic programming for event sequence data. Knowl. Inf. Syst. 7(3), 267–288 (2005) CrossRefGoogle Scholar
  14. 14.
    Ihler, A., Hutchins, J., Smyth, P.: Adaptive event detection with time-varying Poisson processes. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 207–216 (2006) CrossRefGoogle Scholar
  15. 15.
    Cao, L.: In-depth behavior understanding and use: the behavior informatics approach. Inf. Sci. 180, 3067–3085 (2010) CrossRefGoogle Scholar
  16. 16.
    Harris, J.W., Stocker, H.: Maximum likelihood method. In: Handbook of Mathematics and Computational Science, p. 824. Springer, New York (1998), §21.10.4 CrossRefGoogle Scholar
  17. 17.
    Massachusetts Institute of Technology: Reality mining. http://reality.media.mit.edu/ (2008)

Copyright information

© Springer-Verlag London 2012

Authors and Affiliations

  1. 1.Computer Science and EngineeringUniversity of North TexasDentonUSA

Personalised recommendations