Advanced Mechanical Testing and Analysis Methods

  • Wolfgang HoffelnerEmail author


Developments in materials testing, analysis and in physical interpretation of materials properties led to attempts to understand damage as a multi-scale process (in time and in space). Today’s materials testing remains not confined to traditional samples but it also employs millimeter-, micro- and even nano-sized samples. With remarkable improvements of analyses based on electron microscopes and the availability of very powerful synchrotron light sources and neutron techniques new possibilities for analysis of materials became available. Increasing capacity of advanced computers (parallel processing, storage capacity) made it possible to model materials on an atomistic basis and to perform extended calculations on micro-, meso- and macroscale. Advanced testing- and analysis are a necessary tool for validation of materials models. The present chapter provides an introduction into advanced testing, analysis and modeling techniques with particular emphasize on solution of problems of structural materials for nuclear applications.


Fracture Toughness Atom Probe Tomography Kinetic Monte Carlo Dislocation Dynamic Round Robin Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    American Society for Testing of Materials (ASTM) (2011) Accessed 17 Oct 2011
  2. 2.
    ISO standards (2011) Accessed 17 Oct 2011
  3. 3.
    Chen J (2006) Paul Scherrer Institut, Switzerland, unpublished resultsGoogle Scholar
  4. 4.
    Magnusson P (2011) Thesis EPFL. Lausanne and Paul Scherrer Institute, SwitzerlandGoogle Scholar
  5. 5.
    Corwin WR, Rosinski ST, van Walle (eds) (1998) Small specimen test techniques. ASTM STP 1329Google Scholar
  6. 6.
    Sokolov MA, Landes JD, Lucas GE (eds) (2002) Small specimen test techniques: Vol. 4 ASTM STP 1418Google Scholar
  7. 7.
    Rosinski ST, Corwin WR (1998) ASTM –cross-comparison exercise on determination of material properties through miniature sample testing. In: [5], pp 3–14Google Scholar
  8. 8.
    Li M, Stubbins JF (2002) Subsize specimens for fatigue crack growth rate testing of metallic materials. In: [6], pp 321-335Google Scholar
  9. 9.
    Giovanola JH, Klopp RW, Crocker JE, Alexander DJ, Corwin WR, Nanstad KR (1998) Using small cracked round bars to measure the fracture toughness of a pressure vessel steel weldment: a feasibility study. In: [5], pp 328-352Google Scholar
  10. 10.
    Yagnik SK, Ramasubramanian R, Grigoriev V, Sainte-Catherine C, Bertsch J, Adamson RB, Kuo RC, Mahmood ST, Fukuda T, Efsing P, Oberländer BC (2007) Round-Robin testing of fracture toughness characteristics of thin- walled tubing. Presented at the 15th international symposium on “zirconium in the nuclear industry” 25 June 2007,
  11. 11.
    Bertsch J, Hoffelner W (2006) Crack resistance curves determination of tube cladding material. J Nucl Mater 352:116–125. doi: 10.1016/j.jnucmat.2006.02.045 CrossRefGoogle Scholar
  12. 12.
    Grigoriev V, Josefsson B, Rosborg B (1996) In: ER Bradley, GP Sabol (eds) Zirconium in the nuclear industry: 11th international symposium, ASTM STP 1295, p 431Google Scholar
  13. 13.
    Bertolino G, Meyer G, Ipin JP (2002) Degradation of the mechanical properties of Zircaloy-4 due to hydrogen embrittlement. J Alloys Comp 330–332:408CrossRefGoogle Scholar
  14. 14.
    Toloczko MB, Abe K, Hamilton ML, Garner FA, Kurtz RJ (2002) The Effect of test machine compliance on the measured shear punch yield stress as predicted using finite element analysis In: [6], pp 339–349Google Scholar
  15. 15.
    Campitelli EN, Spaetig P, Bonade R, Hoffelner W, Victoria M (2004) Assessment of the constitutive properties from small ball punch test: experiment and modeling. J Nucl Mater 335:366–378CrossRefGoogle Scholar
  16. 16.
    Pouchon MA, Döbeli M, Schelldorfer R, Chen J, Hoffelner W, Degueldre C (2005) ODS steel as structural material for high temperature nuclear reactors, Boпpocы Aтoмнoй Hayки и Texники (Problems of Atomic Science and Technology) 3:122–127Google Scholar
  17. 17.
    Li XD, Bhushan B (2002) A review of nanoindentation continuous stiffness measurement technique and its applications. Science 48(1):11–36. doi: 10.1016/S1044-5803(02)00192-4 MathSciNetGoogle Scholar
  18. 18.
    Hosemann P, Vieh C, Greco RR, Kabra S, Valdez JA, Cappiello MJ, Maloy SA (2009) Nanoindentation on ion irradiated steels. J Nucl Mater 389:239–247CrossRefGoogle Scholar
  19. 19.
    Dorner D, Roller K, Skrotzki B, Stockhert B, Eggeler G (2003) Creep of a TiAl alloy: a comparison of indentation and tensile testing. Mater Sci Eng A 357(1–2):346–354Google Scholar
  20. 20.
    Uchic M, Dimiduk D (2005) A methodology to investigate size scale effects in crystalline plasticity using uniaxial compression testing. Mater Sci Eng A 400–401:268–278. doi: 10.1016/j.msea.2005.03.082 Google Scholar
  21. 21.
    Pouchon MA, Chen J, Ghisleni R, Michler J, Hoffelner W (2010) Characterization of irradiation damage of ferritic ods alloys with advanced micro-sample methods. Exp Mech 50:79–84. doi: 10.1007/s11340-008-9214-5 CrossRefGoogle Scholar
  22. 22.
    Volkert CA, Lilleodden ET (2006) Size effects in the deformation of sub-micron Au columns. Philos Mag 86:5567–5579. doi: 10.1080/14786430600567739 CrossRefGoogle Scholar
  23. 23.
    Uchic MD, Dimiduk DM, Florando JN, Nix WD (2004) Sample dimensions influence strength and crystal plasticity. Science 305(5686):986–989CrossRefGoogle Scholar
  24. 24.
    Ghisleni R, Pouchon M, Mook WM, Chen J, Hoffelner W, Michler J (2008) Ion irradiation effects on the mechanical response of ferritic ODS alloy. MRS Fall Meeting 2008, BostonGoogle Scholar
  25. 25.
    Pouchon MA, Chen J, Hoffelner W (2009) Microcharacterization of damage in materials for advanced nuclear fission plants. In: Linsmeier C, Reinelt M (eds) 1st International conference on new materials for extreme environments.advanced materials research. 59 Trans Tech Publications, pp 269-274Google Scholar
  26. 26.
    Kulcinski et al. (1972) Proceedings of international conference on radiation induced voids in metals CONF-710601. National Technical Information Service, p 453Google Scholar
  27. 27.
    Jung P, Schwarz A, Sahu HK (1985) An apparatus for applying tensile, compressive and cyclic stresses on foil specimens during light ion irradiation. Nucl Instr Meth A 234:331CrossRefGoogle Scholar
  28. 28.
    Focused ion beam (2011) Accessed 1 Nov 2011
  29. 29.
    Pouchon MA, Chen J, Doebeli M, Hoffelner W (2006) Oxide dispersion strengthened steel irradiation with helium ions. J Nucl Mater 352:57–61CrossRefGoogle Scholar
  30. 30.
    Atomic force microscope (2011) Accessed 17 Oct 2011
  31. 31.
    Booker GR (1970) scanning electron microscopy. In: Amelinckx SA, Gevers R, Remant G, Van Landuyt J (eds) Modern diffraction and imaging techniques in materials science, North Holland Pub Co, Amsterdam, p 553Google Scholar
  32. 32.
    Sitzman SD (2004) Introduction to EBSD analysis of micro- to nanoscale microstructures in metals and ceramics. In: Proceedings of SPIE 5392 78 doi: 10.1117/12.542082
  33. 33.
    Abolhassani S, Schäublin R, Groeschel F, Bart G (2001) AEM and HRTEM analysis of the metal-oxide interface of zircaloy-4 prepared by FIB. In: Proceeding of microscopy and microanalysis 2001. Long Beach CA, 5–9 Aug, p 250Google Scholar
  34. 34.
    Hsiung LL (2010) HRTEM study of oxide nanoparticles in Fe-16Cr ODS ferritic steel developed for fusion energy. In: Méndez-Vilas A, Díaz J (eds) microscopy: science technology applications and education. FORMATEX 2010, pp 1811–1819. Accessed 1 Nov 2011
  35. 35.
    Zinkle SJ, Ice GE, Miller MK, Pennycook SJ, Wang XL (2009) Advances in microstructural characterization. J Nucl Mater 386–388:8–14. doi: 10.1016/j.jnucmat.2008.12.302 CrossRefGoogle Scholar
  36. 36.
  37. 37.
    Gavillet D, Martin M, Dai Y (2008) SIMS investigation of the spallation and transmutation products production in lead. J Nucl Mater 377(1):213–218CrossRefGoogle Scholar
  38. 38.
    Neutron irradiation facilities (2011) Accessed 4 Nov 2011
  39. 39.
    Grosse M (2011) Neutron radiography: a powerful tool for fast, quantitative and non-destructive determination of hydrogen concentration and distribution in zirconium alloys. J ASTM International 8 4 DOI:  10.1520/JAI103251
  40. 40.
    Evans A, Van Petegem S, Van Swygenhoven H (2009) POLDI: materials science and engineering instrument at SINQ. Neutron News 20(3):17–19CrossRefGoogle Scholar
  41. 41.
    Swiss light source SLS (2011) Accessed 29 Oct 2011
  42. 42.
    Swissfel (2011) Accessed 10 Nov 2011
  43. 43.
    Jefferson Lab Accessed 10 November 2011
  44. 44.
    Hoffelner W, Froideval A, Pouchon M, Samaras M (2008) Synchrotron X-rays for microstructural investigations of advanced reactor materials. Metall Mater Trans 39A:212–217CrossRefGoogle Scholar
  45. 45.
    Pouchon MA, Froideval A, Degueldre C, Gavillet D, Hoffelner W (2008) Synchrotron light techniques for the investigation of advanced nuclear reactor structural materials. In: structural materials for innovative nuclear systems (SMINS) Karlsruhe . Nuclear Energy Agency, Paris, 4–6 June 2007Google Scholar
  46. 46.
    Pouchon MA, Kropf AJ, Froideval A, Degueldre C, Hoffelner W (2007) An X-ray absorption spectroscopy study of an oxide dispersion strengthened steel. J Nucl Mater 362:253–258CrossRefGoogle Scholar
  47. 47.
    Wende H (2004) Recent advances in x-ray absorption spectroscopy. Rep Prog Phys 67:2105–2181CrossRefGoogle Scholar
  48. 48.
    Brüche E (1933) Elektronenmikroskopische abbildung mit lichtelektrischen elektronen. Z Physik 86:448–450CrossRefGoogle Scholar
  49. 49.
    Scholl A, Ohldag H, Nolting F, Anders S, Stöhr J (2005) Study of ferromagnet-antiferromagnet interfaces using X-ray PEEM. In: Hopster H, Oepen H (eds) Magnetic microscopy of nanostructures. Springer, Berlin, pp 29–50CrossRefGoogle Scholar
  50. 50.
    Froideval A, Iglesias R, Samaras M, Schuppler S, Nagel P, Grolimund D, Victoria M, Hoffelner W (2007) Magnetic and structural properties of FeCr alloys. Phys Rev Lett 99:237201CrossRefGoogle Scholar
  51. 51.
    Heimgarnter P, Restani R, Gavillet D (2005) New specimen holder for XAS-analyses of radioactive specimens at the swiss light source (SLS). In: European working group hot laboratories and remote handling. plenary meeting petten The Netherlands 23–25 May 2005Google Scholar
  52. 52.
    Odette GR, Wirth BD, Bacon DJ, Ghoniem NM (2001) Multiscale-multiphysics modeling of radiation-damaged materials: Embrittlement of pressure-vessel steels. MRS Bulletin March 176Google Scholar
  53. 53.
    Wirth BD, Caturla MJ, de la Diaz RT, Khraishi T, Zbib H (2001) Mechanical property degradation in irradiated materials: a multiscale modeling approach. Nucl Instr Meth B 180:23CrossRefGoogle Scholar
  54. 54.
    Wirth BD, Odette GR, Marian J, Ventelon L, Young-Vandersall JA, Zepeda-Ruiz LA (2004) Multiscale modeling of radiation damage in the fusion environment. J Nucl Mater 329–333:103–111. doi: 10.1016/j.jnucmat.2004.04.156 CrossRefGoogle Scholar
  55. 55.
    Malerba L (2010) Multiscale modelling of irradiation effects in nuclear power plant materials. In: Tipping PG (ed) Understanding and mitigating ageing in nuclear power plants. Woodhead Publ Ltd: 456-543Google Scholar
  56. 56.
    Kwon J, Lee GG, Shin C (2009) Multiscale modelling of radiation effects in materials: pressure vessel embrittlement. Nuclear Engineering and Technology 41:1Google Scholar
  57. 57.
    Samaras M, Victoria M (2008) Modelling in nuclear energy environments. Materials Today 11 12Google Scholar
  58. 58.
    Ghoniem NM, Busso EP, Kioussis N, Huang H (2003) Multiscale modelling of nanomechanics and micromechanics: an overview. Phil Mag 83(31):3475–3528. doi: 10.1080/14786430310001607388 CrossRefGoogle Scholar
  59. 59.
    Dudarev SL, Derlet PM (2005) A ‘magnetic’ interatomic potential for molecular dynamics simulations. J Phys Condens Matter 17(44):7097–7118CrossRefGoogle Scholar
  60. 60.
    Fu CC, Willaime F, Ordejon P (2004) Stability and mobility of mono- and di-interstitials in α-Fe. Phys Rev Lett 92:175503CrossRefGoogle Scholar
  61. 61.
    Hasegawa H, Pettifor D (1983) Microscopic theory of the temperature-pressure phase diagram of iron. Phys Rev Lett 50:130CrossRefGoogle Scholar
  62. 62.
    Garner FA, Toloczko MB, Sencer BH (2000) Comparison of swelling and irradiation creep behaviour of fcc austenitic and bcc ferritic-martensitic alloys at high neutron exposure. J Nucl Mat 276:123CrossRefGoogle Scholar
  63. 63.
    Samaras M, Hoffelner W, Fu CC, Guttmann M, Stoller RE (2007) Materials Modeling—a Key for the design of advanced high temperature reactor components. Revue Generale Nucleaire 5:50–57Google Scholar
  64. 64.
    Stoller RE, Mansur LK (2005) An assessment of radiation damage models and methods. ORNL/TM-2005/506 31 May Google Scholar
  65. 65.
    Wirth BD, Odette GR, Marian J, Ventelon L, Young-Vandersall JA, Zepeda-Ruiz LA (2004) J Nucl Mater 329–333:103CrossRefGoogle Scholar
  66. 66.
    Osetsky YN, Bacon DJ, Singh BN, Wirth B (2002) Atomistic study of the generation, interaction, accumulation and annihilation of cascade-induced defect clusters. J Nucl Mater 307–311:852CrossRefGoogle Scholar
  67. 67.
    Dalla Torre J, Bocquet JL, Doan NV, Adam E, Barbu A (2005) JERK an event-based KMC model to predict microstructure evolution of materials under irradiation. Phil Mag 85(4–7):549–558CrossRefGoogle Scholar
  68. 68.
    Barbu A, Becquart CS, Bocquet JL, Dalla Torre J, Domain C (2005) Comparison between three complementary approaches to simulate large fluence irradiation: application to electron irradiation of thin foils. Phil Mag 85(4–7):541–547CrossRefGoogle Scholar
  69. 69.
    Domain C, Becquart CS, Malerba L (2004) Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach. J Nucl Mater 335:121–145CrossRefGoogle Scholar
  70. 70.
    Stoller RE, Greenwood LR (1999) From molecular dynamics to kinetic rate theory: a simple example of multiscale modeling. In: Butalov VV, Diaz de la RT, Phillips P, Kaxiras E, Ghoniem N (eds) Multiscale modeling of materials, Materials Research Society, PA, pp 203–209Google Scholar
  71. 71.
    Stoller RE, Golubov SI, Domain C, Becquart S (2008) Mean field rate theory and object kinetic Monte Carlo: a comparison of kinetic models. J Nucl Mater 382:77–90CrossRefGoogle Scholar
  72. 72.
    Kubin LP (ed) (1990) Electron microscopy in plasticity and fracture research of materials. Akademie Verlag, Berlin, pp 23–32Google Scholar
  73. 73.
    Devincre B et al (2001) Mesoscopic simulations of plastic deformation. Mat Sci Engin A 211:309–310Google Scholar
  74. 74.
    PARADIS (2011) Accessed 28 Oct 2011
  75. 75.
    Ghoniem N, Tong S, Sun L (2000) Parametric dislocation dynamics: a thermodynamics-based approach to investigations of mesoscopic plastic deformation. Phys Rev B 61(2):913–927CrossRefGoogle Scholar
  76. 76.
    Ortiz M (1999) Plastic yielding as a phase transition. J Appl Mech Trans ASME 66(2):289–298CrossRefGoogle Scholar
  77. 77.
    Koslowskia M, Cuitino AM, Ortiz MA (2002) Phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals. J Mech Phys Solids 50:2597–2635MathSciNetCrossRefGoogle Scholar
  78. 78.
    Lukas H, Fries SG, Sundman B (2007) Computational Thermodynamics: the Calphad Method.. Cambridge University ISBN-10: 0521868114, ISBN-13: 978-0521868112Google Scholar
  79. 79.
    Samaras M, Hoffelner W, Victoria M (2007) Modelling of advanced structural materials for GEN IV reactors. J Nucl Mater 371:28–36CrossRefGoogle Scholar
  80. 80.
    Proville L, Bakó B (2010) Dislocation depinning from ordered nanophases in a model fcc crystal: from cutting mechanism to orowan looping. Acta Mater 58:5565CrossRefGoogle Scholar
  81. 81.
    Bakó B, Samaras M, Weygand D, Chen J, Gumbsch P, Hoffelner W (2009) The influence of helium bubbles on the critical resolved shear stress of dispersion strengthened alloys. J Nucl Mat 386–388:112CrossRefGoogle Scholar
  82. 82.
    Ispánovity PD, Bakó B, Weygand D, Hoffelner W, Samaras M (2010) Impact of gamma’ particle coarsening on the critical resolved shear stress of nickel-base superalloys with low aluminium and/or titanium content. J Nucl Mater 416(1–2):55–59. doi: 10.1016/j.jnucmat.2010.11.051 Google Scholar
  83. 83.
    Samaras M (2009) Multiscale modelling: the role of helium in iron. Mater Today 12(11):46–53CrossRefGoogle Scholar
  84. 84.
    Samaras M, Victoria M, Hoffelner W (2009) Advanced materials modelling—E.V. perspectives. J Nucl Mater 392:286–291Google Scholar
  85. 85.
    Pasianot RC, Malerba L (2007) Interatomic potentials consistent with thermodynamics: The Fe–Cu system. J Nucl Mater 360:118Google Scholar
  86. 86.
    Becquart CS, Raulot JM, Bencteux G, Domain C, Perez M, Garruchet S, Nguyen H (2007) Atomistic modeling of an Fe system with a small concentration of C. Comput Mater Sci 40:119CrossRefGoogle Scholar
  87. 87.
    Becquart CS, Souidi A, Domain C, Hou M, Malerba L, Stoller RE (2006) Effect of displacement cascade structure and defect mobility on the growth of point defect clusters under irradiation. J Nucl Mater 351:39CrossRefGoogle Scholar
  88. 88.
    Becquart CS, Domain C, Malerba L, Hou M (2005) The influence of the internal displacement cascades structure on the growth of point defect clusters in radiation environment. Nucl. Instrum Meth B 228(1–4):181–186CrossRefGoogle Scholar
  89. 89.
    Lambrecht M, Malerba L, Almazouzi A (2008) Influence of different chemical elements on irradiation-induced hardening embrittlement of RPV steels. J Nucl Mater 378(3):282–290. doi: 10.1016/j.jnucmat.2008.06.030 CrossRefGoogle Scholar
  90. 90.
    Vincent E, Becquart CS, Pareige C, Pareige P, Domain C (2008) Precipitation of the FeCu system: a critical review of atomic kinetic Monte Carlo simulations. J Nucl Mater 373:387–401CrossRefGoogle Scholar
  91. 91.
    Marini B, Massoud JP, Bugat S, Lidburry D (2007) ICFRM 2007, #521Google Scholar
  92. 92.
    Victoria M, Dudarev S, Boutard JL, Diegele E, Lässer R, Almazouzi A, Caturla MJ, Fu CC, Källne J, Malerba L, Nordlund K, Perlado M, Rieth M, Samaras M, Schaeublin R, Singh BN, Willaime F (2007) Fus Eng Des 82:2413CrossRefGoogle Scholar
  93. 93.
    Schaeublin R, Chiu YL (2007) Effect of helium on irradiation-induced hardening of iron: A simulation point of view. J Nucl Mater 362:152CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2013

Authors and Affiliations

  1. 1.OberrohrdorfSwitzerland

Personalised recommendations