Dynamic Visual Analytics—Facing the Real-Time Challenge

  • Florian Mansmann
  • Fabian Fischer
  • Daniel A. Keim

Abstract

Modern communication infrastructures enable more and more information to be available in real-time. While this has proven to be useful for very targeted pieces of information, the human capability to process larger quantities of mostly textual information is definitely limited. Dynamic visual analytics has the potential to circumvent this real-time information overload by combining incremental analysis algorithms and visualizations to facilitate data stream analysis and provide situational awareness. In this book chapter we will thus define dynamic visual analytics, discuss its key requirements and present a pipeline focusing on the integration of human analysts in real-time applications. To validate this pipeline, we will demonstrate its applicability in a real-time monitoring scenario of server logs.

Keywords

Visual analytics Real-time analysis Dynamic visualization Data streams 

References

  1. Aggarwal, C. C. (2007). Data streams: models and algorithms. New York: Springer. MATHGoogle Scholar
  2. Aigner, W., Miksch, S., Schumann, H., & Tominski, C. (2011). Visualization of time-oriented data. Human-computer interaction series. New York: Springer. CrossRefGoogle Scholar
  3. Best, D., Bohn, S., Love, D., Wynne, A., & Pike, W. (2010). Real-time visualization of network behaviors for situational awareness. Proceedings of the seventh international symposium on visualization for cyber security (pp. 79–90). New York: ACM. CrossRefGoogle Scholar
  4. Chaudhry, N., Shaw, K., & Abdelguerfi, M. (2005). Stream data management (Vol. 30). Berlin: Springer. MATHCrossRefGoogle Scholar
  5. Endsley, M. (1995). Toward a theory of situation awareness in dynamic systems. Human Factors: The Journal of the Human Factors and Ergonomics Society, 37(1), 32–64. CrossRefGoogle Scholar
  6. Foresti, S., Agutter, J., Livnat, Y., Moon, S., & Erbacher, R. (2006). Visual correlation of network alerts. IEEE Computer Graphics and Applications, 26, 48–59. CrossRefGoogle Scholar
  7. Gama, J. (2010). Knowledge discovery from data streams. Data mining and knowledge discovery series. Boca Raton: Chapman & Hall, CRC Press. MATHCrossRefGoogle Scholar
  8. Golab, L., & Özsu, M. (2010). Data stream management. Morgan & Claypool Publishers. MATHGoogle Scholar
  9. Hao, M. C., Keim, D. A., Dayal, U., Oelke, D., & Tremblay, C. (2008). Density displays for data stream monitoring. Computer Graphics Forum, 27(3), 895–902. CrossRefGoogle Scholar
  10. Hochheiser, H., & Shneiderman, B. (2004). Dynamic query tools for time series data sets: timebox widgets for interactive exploration. Information Visualization, 3(1), 1. CrossRefGoogle Scholar
  11. Kasetty, S., Stafford, C., Walker, G., Wang, X., & Keogh, E. (2008). Real-time classification of streaming sensor data. In Tools with artificial intelligence, 2008. ICTAI’08. 20th IEEE international conference (Vol. 1, pp. 149–156). IEEE. CrossRefGoogle Scholar
  12. Keim, D. A., Mansmann, F., Schneidewind, J., Thomas, J., & Ziegler, H. (2008). Visual analytics: scope and challenges. In S. Simoff, M. H. Boehlen & A. Mazeika (Eds.), Lecture notes in computer science (LNCS). Visual data mining: theory, techniques and tools for visual analytics. Berlin: Springer. Google Scholar
  13. Keim, D. A., Kohlhammer, J., Ellis, G., & Mansmann, F. (Eds.) (2010). Mastering the information age—solving problems with visual analytics. Eurographics. Google Scholar
  14. Krstajic, M., Bertini, E., Mansmann, F., & Keim, D. A. (2010). Visual analysis of news streams with article threads. In StreamKDD ’10: proceedings of the first international workshop on novel data stream pattern mining techniques (pp. 39–46). New York: ACM. CrossRefGoogle Scholar
  15. Lin, J., Keogh, E., Lonardi, S., & Chiu, B. (2003). A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on research issues in data mining and knowledge discovery (p. 11). New York: ACM. Google Scholar
  16. Lin, J., Keogh, E., Lonardi, S., Lankford, J., & Nystrom, D. (2004). VizTree: a tool for visually mining and monitoring massive time series databases. In Proceedings of the thirtieth international conference on very large data bases (Vol. 30, pp. 1269–1272). VLDB Endowment. Google Scholar
  17. McLachlan, P., Munzner, T., Koutsofios, E., & North, S. (2008). Liverac: interactive visual exploration of system management time-series data. In Proceedings of the twenty-sixth annual SIGCHI conference on human factors in computing systems (pp. 1483–1492). New York: ACM. CrossRefGoogle Scholar
  18. Thomas, J., & Cook, K. (2005). Illuminating the path: the research and development agenda for visual analytics. Los Alamitos: IEEE Computer Society. Google Scholar
  19. Van Wijk, J., & Van Selow, E. (1999). Cluster and calendar based visualization of time series data. In Infovis. Los Alamitos: IEEE Computer Society. Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Florian Mansmann
    • 1
  • Fabian Fischer
    • 1
  • Daniel A. Keim
    • 1
  1. 1.University of KonstanzKonstanzGermany

Personalised recommendations