Cooperative Physical Human-Human and Human-Robot Interaction

  • Kyle B. ReedEmail author
Part of the Springer Series on Touch and Haptic Systems book series (SSTHS)


This chapter examines the physical interaction between two humans and between a human and a robot simulating a human in the absence of all other modes of interaction, such as visual and verbal. Generally, when asked, people prefer to work alone on tasks requiring accuracy. However, as demonstrated by the research in this chapter, when individuals are placed in teams requiring physical cooperation, their performance is frequently better than their individual performance despite perceptions that the other person was an impediment. Although dyads are able to perform certain actions significantly faster than individuals, dyads also exert large opposition forces. These opposition forces do not contribute to completing the task, but are the sole means of haptic communication between the dyads. Solely using this haptic communication channel, dyads were able to temporally divide the task based on task phase. This chapter provides further details on how two people haptically cooperate on physical tasks.


Force Feedback Acceleration Phase Social Facilitation Human Partner Haptic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schmidt, R.C., Carello, C., Turvey, M.T.: Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. J. Exp. Psychol. Hum. Percept. Perform. 16(2), 227–247 (1990) CrossRefGoogle Scholar
  2. 2.
    Schmidt, R.C., Turvy, M.T.: Phase-entrainment dynamics of visually couple rhythmic movements. Biol. Cybern. 70, 369–376 (1994) CrossRefGoogle Scholar
  3. 3.
    Amazeen, P.G., Schmidt, R.C., Turvey, M.T.: Frequency detuning of the phase entrainment dynamics of visually coupled rhythmic movements. Biol. Cybern. 72, 511–518 (1995) CrossRefGoogle Scholar
  4. 4.
    Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., Rizzolatti, G.: Motor facilitation during action observation: a magnetic stimulations study. J. Neurophysiol. 73, 2608–2611 (1992) Google Scholar
  5. 5.
    Rizzolatti, G., Fogassi, L., Gallese, V.: Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev., Neurosci. 2(9), 661–670 (2001) CrossRefGoogle Scholar
  6. 6.
    Sebanz, N., Knoblich, G., Prinz, W.: Representing others’ actions: just like one’s own? Cognition 88, 11–21 (2003) CrossRefGoogle Scholar
  7. 7.
    Sallnäs, E., Zhai, S.: Collaboration meets Fitts’ law: Passing virtual objects with and without haptic force feedback. In: Proceedings of INTERACT, IFIP Conference on Human-Computer Interaction, pp. 97–104 (2003) Google Scholar
  8. 8.
    Sebanz, N., Bekkering, H., Knoblich, G.: Joint action: bodies and minds moving together. Trends Cogn. Sci. 10(2), 70–76 (2006) CrossRefGoogle Scholar
  9. 9.
    Scheidt, R.A., Dingwell, J.B., Mussa-Ivaldi, F.A.: Learning to move amid uncertainty. J. Neurophysiol. 86 (2001) Google Scholar
  10. 10.
    Wegner, N., Zeaman, D.: Team and individual performance on a motor learning task. J. Gen. Psychol. 55, 127–142 (1956) CrossRefGoogle Scholar
  11. 11.
    Shaw, R.E., Kadar, E., Sim, M., Repperger, D.W.: The intentional spring: A strategy for modeling systems that learn to perform intentional acts. J. Motiv. Behav. 24(1), 3–28 (2011) CrossRefGoogle Scholar
  12. 12.
    Knoblich, G., Jordon, J.S.: Action coordination in groups and individuals: Learning anticipatory control. J. Exp. Psychol. Learn. Mem. Cogn. 29(5), 1006–1016 (2003) CrossRefGoogle Scholar
  13. 13.
    Moffett, M.W.: Cooperative food transport by an asiatic ant. Natl. Geogr. Res. 4, 386–394 (1988) Google Scholar
  14. 14.
    Kube, C.R., Bonabeua, E.: Cooperative transport by ants and robots. Robot. Auton. Syst. 30, 85–101 (2000) CrossRefGoogle Scholar
  15. 15.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406, 39–42 (2000) CrossRefGoogle Scholar
  16. 16.
    Summers, L.G., Shannon, J.H., White, T.R., Shiner, R.J.: Fly-by-wire sidestick controller evaluation. SAE Technical Paper 871761, Aerospace Technology Conference and Exposition, Long Beach, CA, Society of Automotive Engineers (1987) Google Scholar
  17. 17.
    Field, E., Harris, D.: A comparative survey of the utility of cross-cockpit linkages and autoflight systems’ backfeed to the control inceptors of commercial aircraft. Ergonomics 41(10), 1462–1477 (1998) CrossRefGoogle Scholar
  18. 18.
    Reed, K.B., Peshkin, M.A., Hartmann, M.J., Grabowecky, M., Patton, J., Vishton, P.M.: Haptically linked dyads: Are two motor-control systems better than one? Psychol. Sci. 17(5), 365–366 (2006) CrossRefGoogle Scholar
  19. 19.
    Reed, K.B., Peshkin, M., Hartmann, M.J., Patton, J., Vishton, P.M., Grabowecky, M.: Haptic cooperation between people, and between people and machines. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2109–2114 (2006) CrossRefGoogle Scholar
  20. 20.
    Glynn, S., Henning, R.: Can teams outperform individuals in a simulated dynamic control task. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 6, pp. 141–144 (2000) (ISSN: 10711813) Google Scholar
  21. 21.
    Glynn, S., Fekieta, R., Henning, R.: Use of force-feedback joysticks to promote teamwork in virtual teleoperation. In: Virtual Teleoperation Proc. of the Human Factors and Ergonomics Society 45th Annual Meeting (2001) Google Scholar
  22. 22.
    Reed, K.B., Peshkin, M.A.: Physical collaboration of human-human and human-robot teams. IEEE Trans. Haptics 1(2), 108–120 (2008) CrossRefGoogle Scholar
  23. 23.
    Reed, K.B., Patton, J., Peshkin, M.: Replicating human-human physical interaction. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 3615–3620 (2007) CrossRefGoogle Scholar
  24. 24.
    Turing, A.: Computing machinery and intelligence. Mind LIX(236), 433–460 (1950) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Steuer, J.: Defining virtual reality: Dimensions determining telepresence. J. Commun. 42(4), 73–93 (1992) CrossRefGoogle Scholar
  26. 26.
    Canny, J., Paulos, E.: Tele-embodiment and shattered presence: Reconstructing the body for online interaction. In: The Robot in the Garden: Telerobotics and Telepistemology in the Age of the Internet, pp. 276–294 (2000) Google Scholar
  27. 27.
    Zajonc, R.B.: Social facilitation. Science 149, 269–274 (1965) CrossRefGoogle Scholar
  28. 28.
    Triplett, N.: The dynamogenic factors in pacemaking and competition. Am. J. Psychol. 9, 507–533 (1898) CrossRefGoogle Scholar
  29. 29.
    Schmitt, B.H., Gilovich, T., Goore, N., Joseph, L.: Mere presence and social facilitation: One more time. J. Exp. Soc. Psychol. 22, 242–248 (1986) CrossRefGoogle Scholar
  30. 30.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954) CrossRefGoogle Scholar
  31. 31.
    Mottet, D., Guiard, Y., Ferrand, T., Bootsma, R.J.: Two-handed performance of a rhythmical Fitts task by individuals and dyads. J. Exp. Psychol. Hum. Percept. Perform. 27(6), 1275–1286 (2001) CrossRefGoogle Scholar
  32. 32.
    Reed, K.B., Peshkin, M., Colgate, J.E., Patton, J.: Initial studies in human-robot-human interaction: Fitts’ law for two people. In: Proc. IEEE Int. Conf. Robot. Autom., pp. 2333–2338 (2004) Google Scholar
  33. 33.
    Accot, J., Zhai, S.: Beyond Fitts’ law: Models for trajectory-based HCI tasks. In: Proceedings of the CHI, vol. 97, pp. 295–302 (1997) Google Scholar
  34. 34.
    Looser, J.C.A.: 3d games as motivation in Fitts’ law experiments. Masters thesis, University of Canterbury (2002) Google Scholar
  35. 35.
    Hinckley, K., Cutrell, E., Bathiche, S., Muss, T.: Quantitative analysis of scrolling techniques. In: Conference on Human Factors in Computer Systems, pp. 65–72 (2002) Google Scholar
  36. 36.
    Zhai, S., Conversy, S., Beaudouin-Lafon, M., Guiard, Y.: Human on-line response to target expansion. In: Proceedings of CHI 2003, ACM Conference on Human Factors in Computing Systems, Fort Lauderdale, Florida, pp. 177–184 (2003) CrossRefGoogle Scholar
  37. 37.
    Shergill, S.S., Bays, P.M., Frith, C.D., Wolpert, D.M.: Two eyes for an eye: The neuroscience of force escalation. Science 301, 187 (2003) CrossRefGoogle Scholar
  38. 38.
    Christian, W.: Multiple humans interacting with a robot to obtain the fundamental properties of materials. Master’s thesis, University of South Florida (2010) Google Scholar
  39. 39.
    Gentry, S., Feron, E., Murray-Smith, R.: Human-human haptic collaboration in cyclical Fitts’ tasks. In: Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst (2005) Google Scholar
  40. 40.
    Gentry, S.: Dancing cheek to cheek: Haptic communication between partner dancers and swing as a finite state machine. Ph.D. thesis, Massachusetts Institute of Technology (2005) Google Scholar
  41. 41.
    Holldampf, J., Peer, A., Buss, M.: Synthesis of an interactive haptic dancing partner. In: Proc. IEEE RO-MAN, pp. 527–532 (2010) Google Scholar
  42. 42.
    Karniel, A., Meir, R., Inbar, G.F.: Exploiting the virtue of redundancy. In: International Joint Conference on Neural Networks, Washington, DC (1999) Google Scholar
  43. 43.
    Lacquaniti, F., Maioli, C.: Distributed control of limb position and force. In: Stelmach, G.E., Requin, J. (eds.) Tutorials in Motor Behavior II, pp. 31–54 (1992) Google Scholar
  44. 44.
    Reed, K.B., Peshkin, M., Hartmann, M.J., Colgate, J.E., Patton, J.: Kinesthetic interaction. In: Proc. IEEE Int. Conf. Rehabilitation Robotics, pp. 569–574 (2005) Google Scholar
  45. 45.
    Groten, R., Feth, D., Goshy, H., Peer, A., Kenny, D.A., Buss, M..: Experimental analysis of dominance in haptic collaboration. In: Proc. IEEE RO-MAN, pp. 723–729 (2009) Google Scholar
  46. 46.
    Flash, T., Hogan, N.: The coordination of arm movements: An experimentally confirmed model. J. Neurosci. 5(7), 1688–1703 (1985) Google Scholar
  47. 47.
    Feygin, D., Keehner, M., Tendick, F.: Haptic guidance: Experimental evaluation of a haptic training method for a perceptual motor skill. In: Proceedings of the 10th Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems (HAPTICS) (2002) Google Scholar
  48. 48.
    Rosenbaum, D.A.: Human movement initiation: Specification of arm, direction, and extent. J. Exp. Psychol. Gen. 109, 444–474 (1980) CrossRefGoogle Scholar
  49. 49.
    Hallett, M., Shahani, B., Young, R.: EMG analysis of stereotyped voluntary movements in man. J. Neurol. Neurosurg. Psychiatry 38, 1154–1162 (1975) CrossRefGoogle Scholar
  50. 50.
    Hannaford, B., Stark, L.: Roles of the elements of the triphasic control signal. Exp. Neurol. 90, 619–634 (1985) CrossRefGoogle Scholar
  51. 51.
    Gottlieb, G.L., Corcos, D.M., Agarwal, G.C., Latash, M.L.: Principles underlying single joint movement strategies. In: Winters, J.M., Woo, S.L.Y. (eds.) Multiple Muscle Systems, pp. 236–250. Springer, New York (1990) CrossRefGoogle Scholar
  52. 52.
    Gottlieb, G.L., Corcos, D.M., Agarwal, G.C.: Organizing principles for single-joint movements. I. A speed insensitive strategy. J. Neurophysiol. 62, 342–357 (1989) Google Scholar
  53. 53.
    Gottlieb, G.L., Chen, C.H., Corcos, D.M.: Nonlinear control of movement distance at the human elbow. Exp. Brain Res. 112, 289–297 (1996) CrossRefGoogle Scholar
  54. 54.
    Ramos, C.F., Hacisalihzade, S.S., Stark, L.W.: Behavior space of a stretch reflex model and its implications for the neural control of voluntary movement. Med. Biol. Eng. Comput. 28, 15–23 (1990) CrossRefGoogle Scholar
  55. 55.
    Prodoehl, J., Gottlieb, G., Corcos, D.: The neural control of single degree-of-freedom elbow movements: Effect of starting joint position. Exp. Brain Res. 153, 7–15 (2003) CrossRefGoogle Scholar
  56. 56.
    Pan, P., Peshkin, M.A., Colgate, J.E., Lynch, K.M.: Static single-arm force generation with kinematic constraints. J. Neurophysiol. 93, 2752–2765 (2005) CrossRefGoogle Scholar
  57. 57.
    Feth, D., Groten, R., Peer, A., Hirche, S., Buss, M.: Performance related energy exchange in haptic human-human interaction in a shared virtual object manipulation task. In: Proc. and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Third Joint EuroHaptics Conference. World Haptics 2009, 8–20 March 2009, pp. 338–343 (2009) CrossRefGoogle Scholar
  58. 58.
    Pham, H.T.T., Ueha, R., Hirai, H., Miyazaki, F.: A study on dynamical role division in a crank-rotation task from the viewpoint of kinetics and muscle activity analysis. In: Proc. IEEE/RSJ Int Intelligent Robots and Systems (IROS) Conf., pp. 2188–2193 (2010) Google Scholar
  59. 59.
    Ueha, R., Pham, H.T.T., Hirai, H., Miyazaki, F.: A simple control design for human-robot coordination based on the knowledge of dynamical role division. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS 2009, pp. 3051–3056 (2009) Google Scholar
  60. 60.
    Ueha, R., Pham, H.T.T., Hirai, H., Miyazaki, F.: Dynamical role division between two subjects in a crank-rotation task. In: Proc. IEEE Int. Conf. Rehabilitation Robotics ICORR 2009, pp. 701–706 (2009) CrossRefGoogle Scholar
  61. 61.
    Reinkensmeyer, D.J., Lum, P.S., Lehman, S.L.: Human control of a simple two-hand grasp. Biol. Cybern. 67(6), 553–564 (1992) CrossRefGoogle Scholar
  62. 62.
    Swinnen, S.P., Wenderoth, N.: Two hands, one brain: cognitive neuroscience of bimanual skill. Trends Cogn. Sci. 8(1), 18–25 (2004) CrossRefGoogle Scholar
  63. 63.
    Malabet, H.G., Robles, R.A., Reed, K.B.: Symmetric motions for bimanual rehabilitation. In: Proc. IEEE/RSJ Int Intelligent Robots and Systems (IROS) Conf., pp. 5133–5138 (2010) Google Scholar
  64. 64.
    McAmis, S., Reed, K.B.: Symmetry modes and stiffnesses for bimanual rehabilitation. In: Proc. of the 12th Intl. Conf. on Rehabilitation Robotics (ICORR), pp. 1106–1111 (2011) Google Scholar
  65. 65.
    Osu, R., Franklin, D.W., Kato, H., Gomi, H., Domen, K., Yoshioka, T., Kawato, M.: Short- and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG. J. Neurophysiol. 88, 991–1004 (2001) Google Scholar
  66. 66.
    Milner, T.E.: Adaptation to destabilizing dynamics by means of muscle cocontraction. Exp. Brain Res. 143, 406–416 (2002) CrossRefGoogle Scholar
  67. 67.
    Franklin, D.W., Burdet, E., Osu, R., Kawato, M., Milner, T.E.: Functional significance of stiffness in adaptation of multijoint arm movements to stable and unstable dynamics. Exp. Brain Res. 151, 145–157 (2003) CrossRefGoogle Scholar
  68. 68.
    Shadmehr, R., Mussa-lvaldi, F.A.: Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14(5), 3208–3224 (1994) Google Scholar
  69. 69.
    Patton, J.L., Elkins, P.: Training with a Bimanual-Grasp Beneficially Influences Single Limb Performance. Society for Neuroscience, Orlando (2002) Google Scholar
  70. 70.
    Chib, V.S., Patton, J.L., Lynch, K.M., Mussa-Ivaldi, F.A.: Haptic discrimination of perturbing fields and object boundaries. HAPTICS 2004 0-7695-2112-6/04 (2004) Google Scholar
  71. 71.
    Perreault, E.J., Kirsch, R.F., Crago, P.E.: Effects of voluntary force generation on the elastic components of endpoint stiffness. Exp. Brain Res. 141, 312–323 (2001) CrossRefGoogle Scholar
  72. 72.
    Gomi, H., Osu, R.: Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J. Neurosci. 18(21), 8965–8978 (1998) Google Scholar
  73. 73.
    Choi, S., Walker, L., Tan, H.Z., Crittenden, S., Reifenberger, R.: Force constancy and its effect on haptic perception of virtual surfaces. ACM Trans. Appl. Percept. 2(2), 89–105 (2005) CrossRefGoogle Scholar
  74. 74.
    Chib, V.S., Patton, J.L., Lynch, K.M., Mussa-Ivaldi, F.A.: Haptic identification of surfaces as fields of force. J. Neurophysiol. 95, 1068–1077 (2006) CrossRefGoogle Scholar
  75. 75.
    Reed, K.B.: Understanding the haptic interactions of working together. Ph.D. thesis, Northwestern University (2007) Google Scholar
  76. 76.
    Akazawa, K., Milner, T.E., Stein, R.B.: Modulation of reflex EMG and stiffness in response to stretch of human finger muscle. J. Neurophysiol. 49(1), 16–27 (1983) Google Scholar
  77. 77.
    Takubo, T., Arai, H., Hayashibara, Y., Tanie, K.: Human-robot cooperative manipulation using a virtual nonholonomic constraint. Int. J. Robot. Res. 21, 541–553 (2002) CrossRefGoogle Scholar
  78. 78.
    Rahman, M., Ikeura, R., Mizutani, K.: Cooperation characteristics of two humans in moving an object. Mach. Intell. Robot. Control 4(2), 43–48 (2002) Google Scholar
  79. 79.
    Rahman, M., Ikeura, R., Mizutani, K.: Analysis of cooperation characteristics of two humans in moving an object. In: Proceedings of the International Conference on Mechatronics and Information Technology, vol. 19, pp. 454–458 (2001) Google Scholar
  80. 80.
    Rahman, M., Ikeura, R., Mitzutani, K.: Impedance characteristics of human arm for cooperative robot. In: International Conference on Control, Automation and Systems, pp. 1455–1460 (2002) Google Scholar
  81. 81.
    Rahman, M., Ikeura, R., Mizutani, K.: Control characteristics of two humans in cooperative task and its application to robot control. In: Proceedings of 2000 International Conference on Industrial Electronics Control and Instrumentation, pp. 1773–1778 (2000) Google Scholar
  82. 82.
    Corteville, B., Aertbelien, E., Bruyninckx, H., Schutter, J.D., Brussel, H.V.: Human-inspired robot assistant for fast point-to-point movements. In: Proc. IEEE Int. Conf. Robot. Autom. (2007) Google Scholar
  83. 83.
    Oguz, S.O., Kucukyilmaz, A., Sezgin, T.M., Basdogan, C.: Haptic negotiation and role exchange for collaboration in virtual environments. In: Proc. IEEE Haptics Symp., pp. 371–378 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.University of South FloridaTampaUSA

Personalised recommendations