Advertisement

A Riemannian Dennis-Moré Condition

  • Kyle A. Gallivan
  • Chunhong Qi
  • P.-A. Absil

Abstract

In this paper, we generalize from Euclidean spaces to Riemannian manifolds an important result in optimization that guarantees Riemannian quasi-Newton algorithms converge superlinearly.

Keywords

Riemannian Manifold Tangent Space Unconstrained Optimization Superlinear Convergence Vector Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its authors.

This work was performed in part while the first author was a Visiting Professor at the Institut de mathématiques pures et appliquées (MAPA) at Université catholique de Louvain.

References

  1. 1.
    Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007) doi: 10.1007/s10208-005-0179-9 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, New Jersey (2008) zbMATHGoogle Scholar
  3. 3.
    Adler, R.L., Dedieu, J.P., Margulies, J.Y., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22(3), 359–390 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Baker, C.G.: Riemannian manifold trust-region methods with applications to eigenproblems. Ph.D. thesis, School of Computational Science, Florida State University (2008) Google Scholar
  5. 5.
    Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Springer, New Jersey (1983) zbMATHGoogle Scholar
  6. 6.
    Dreisigmeyer, D.W.: Direct search algorithms over Riemannian manifolds (2006). Optimization Online 2007-08-1742 Google Scholar
  7. 7.
    Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constrains. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37(2), 177–219 (1982) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Helmke, U., Moore, J.: Optimization and Dynamical Systems. Springer, Berlin (1994) Google Scholar
  10. 10.
    Qi, C.: Numerical optimization on Riemannian manifolds. Ph.D. thesis, Florida State University, Tallahassee, FL, USA (2011) Google Scholar
  11. 11.
    Smith, S.T.: Optimization techniques on Riemannian manifolds. In: Bloch, A. (ed.) Hamiltonian and Gradient Flows, Algorithms and Control. Fields Inst. Commun., vol. 3, pp. 113–136. Amer. Math. Soc., Providence (1994) Google Scholar
  12. 12.
    Yang, Y.: Globally convergent optimization algorithms on Riemannian manifolds: Uniform framework for unconstrained and constrained optimization. J. Optim. Theory Appl. 132(2), 245–265 (2007). doi: 10.1007/s10957-006-9081-0 MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA
  2. 2.Department of Mathematical Engineering, ICTEAM InstituteUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations