An Overview of Tuning Rules for the PI and PID Continuous-Time Control of Time-Delayed Single-Input, Single-Output (SISO) Processes

Part of the Advances in Industrial Control book series (AIC)

Abstract

The ability of PI and PID controllers to compensate many practical processes has led to their wide acceptance in industrial applications. The requirement to choose two or three controller parameters is most easily done using tuning rules. Starting with a general discussion of industrial practice, the chapter will provide an outline of tuning rules for continuous-time PI and PID control of time-delayed single-input, single-output (SISO) processes.

References

  1. 1.
    ABB: Operating Guide for Commander 300/310, Sect. 7 (1996) Google Scholar
  2. 2.
    ABB: Instruction manual for 53SL6000. Document: PN24991.pdf (2001). Available at www.abb.com. Cited 1 September 2004
  3. 3.
    Abbas, A.: A new set of controller tuning relations. ISA Trans. 36, 183–187 (1997) CrossRefGoogle Scholar
  4. 4.
    Aikman, A.R.: The frequency response approach to automatic control problems. Trans. Soc. Instrum. Technol. 2–16 (1950) Google Scholar
  5. 5.
    Alcántara, S., Pedret, C., Vilanova, R., Zhang, W.D.: Setpoint-oriented robust PID tuning from a simple min-max model matching specification. In: Proc. IEEE Conference on Emerging Technologies and Factory Automation, Mallorca, Spain, pp. 1–8 (2009) CrossRefGoogle Scholar
  6. 6.
    Alcántara, S., Pedret, C., Vilanova, R.: On the model matching approach to PID design: analytical perspective for robust servo/regulator tradeoff tuning. J. Process Control 20, 596–608 (2010) CrossRefGoogle Scholar
  7. 7.
    Alenany, A., Abdelrahman, O., Ziedan, I.: Simple tuning rules of PID controllers for integrator/dead time processes. In: Proc. International Conference for Global Science and Technol., Cairo, Egypt (2005). Available at www.icgst.com/ACSE05/papers/P1110504001.pdf. Cited 4 January 2011 Google Scholar
  8. 8.
    Alfaro, V.M.: Actualización del método de sintonización de controladores de Ziegler y Nichols. Ingénierie 15(1–2), 39–52 (2005) (in Spanish) Google Scholar
  9. 9.
    Alfaro, V.M.: Estimación del desempeño IAE de los reguladores y servomecanismos PID. Ingénierie 15(1), 79–90 (2005) (in Spanish) Google Scholar
  10. 10.
    Alfaro, V.M.: Analytical robust tuning of two-degree-of-freedom PI and PID controllers (ART2) (2007). Available at http://www2.eie.ucr.ac.cr/~valfaro/docs/vma.art2.pdf. Cited 30 March 2009
  11. 11.
    Alfaro, V.M., Vilanova, R., Arrieta, O.: Analytical robust tuning of PI controllers for first-order-plus-dead-time processes. In: Proc. IEEE International Conference on Emerging Technologies and Factory Automation, Hamburg, Germany, pp. 273–280 (2008) CrossRefGoogle Scholar
  12. 12.
    Alfaro, V.M., Vilanova, R., Arrieta, O.: Two-degree-of-freedom PI/PID controller tuning approach for smooth control on cascade control systems. In: Proc. 47th IEEE Conference on Decision and Control, Mexico, pp. 5680–5685 (2008) CrossRefGoogle Scholar
  13. 13.
    Alfaro, V.M., Vilanova, R., Arrieta, O.: Robust tuning of two-degree-of-freedom (2-DoF) PI/PID based cascade control systems. J. Process Control 19, 1658–1670 (2009) CrossRefGoogle Scholar
  14. 14.
    Alfaro, V.M., Vilanova, R., Arrieta, O.: NORT: a non-oscillatory robust tuning approach for 2-DoF PI controllers. In: Proc. 18th IEEE International Conference on Control Applications, St. Petersburg, Russia, pp. 1003–1008 (2009) Google Scholar
  15. 15.
    Alfaro, V.M., Vilanova, R., Arrieta, O.: Maximum sensitivity based robust tuning for two-degree-of-freedom proportional-integral controllers. Ind. Eng. Chem. Res. 49(11), 5415–5423 (2010) CrossRefGoogle Scholar
  16. 16.
    Ali, A., Majhi, S.: PI/PID controller design based on IMC and percentage overshoot specification to controller setpoint change. ISA Trans. 48, 10–15 (2009) CrossRefGoogle Scholar
  17. 17.
    Ali, A., Majhi, S.: Controller design for unstable FOPTD plants based on sensitivity. In: Proc. IFAC World Congress, Seoul, Korea, pp. 5837–5841 (2009) Google Scholar
  18. 18.
    Ali, A., Majhi, S.: PID controller tuning for integrating processes. ISA Trans. 49, 70–78 (2010) CrossRefGoogle Scholar
  19. 19.
    Alvarez-Ramirez, J., Morales, A., Cervantes, I.: Robust proportional-integral control. Ind. Eng. Chem. Res. 37, 4740–4747 (1998) CrossRefGoogle Scholar
  20. 20.
    Andersson, M.: A MATLAB tool for rapid process identification and PID design. MSc thesis, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden (2000) Google Scholar
  21. 21.
    Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design and technology. IEEE Trans. Control Syst. Technol. 13, 559–576 (2005) CrossRefGoogle Scholar
  22. 22.
    Anil, C., Sree, R.P.: Design of PID controllers for FOPTD systems with an integrator and with/without a zero. Indian Chem. Eng., Sect. A 47(4), 235–242 (2005) Google Scholar
  23. 23.
    Araki, M.: 2-degree of freedom control system. Syst. Control 29, 649–656 (1985) (in Japanese) MathSciNetGoogle Scholar
  24. 24.
    Arbogast, J.E., Cooper, D.J.: Extension of IMC tuning correlations for non-self regulating (integrating) processes. ISA Trans. 46, 303–311 (2007) CrossRefGoogle Scholar
  25. 25.
    Arbogast, J.E., Cooper, D.J., Rice, R.C.: Model-based tuning methods for PID controllers (2006). Available at http://www.bin95.com/Model-Based%20Tuning%20Methods%20for%20PID%20Controllers-2.pdf. Cited 4 January 2011
  26. 26.
    Argelaguet, R., Pons, M., Martin Aguilar, J., Quevedo, J.: A new tuning of PID controllers based on LQR optimization. In: Proc. European Control Conference, Brussels, Belgium (1997). Available at www.cds.caltech.edu/conferences/related/ECC97/proceeds/251_500/ECC486.pdf. Cited 4 January 2011 Google Scholar
  27. 27.
    Argelaguet, R., Pons, M., Quevedo, J., Aguilar, J.: A new tuning of PID controllers based on LQR optimization. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, pp. 303–308 (2000) Google Scholar
  28. 28.
    Arrieta, O.: Comparación del desempeño de los métodos de sintonización de controladores PI y PID basados en criterios integrales. Proyecto Eléctrico, Universidad de Costa Rica (2003). Available at http://www2.eie.ucr.ac.cr/~oarrieta/proyecto_%20Tesis_%20Licenciatura.pdf. Cited 6 September 2006 (in Spanish)
  29. 29.
    Arrieta, O.: PID control: servo/regulation performance and robustness issues. PhD thesis, Universitat Autònoma de Barcelona, September (2010) Google Scholar
  30. 30.
    Arrieta, O.: Sintonización de controladores PI y PID empleando un índice de desempeño de criterio múltiple. Dissertation, Licenciado en Ingeniería Eléctrica, Universidad de Costa Rica (2006). Available at http://www2.eie.ucr.ac.cr/~oarrieta/Tesis_Licenciatura.pdf. Cited 4 January 2011 (in Spanish)
  31. 31.
    Arrieta, O., Alfaro, V.M.: Sintonización de controladores PI y PID utilizando los criterios integrales IAE e ITAE. Ingénierie 13(1–2), 31–39 (2003). Available at http://www2.eie.ucr.ac.cr/~oarrieta/oarrieta_valfaro03.pdf. Cited 4 January 2011 (in Spanish) Google Scholar
  32. 32.
    Arrieta, O., Vilanova, R.: PID autotuning settings for balanced servo/regulation operation. In: Proc. 15th Mediterranean Conference on Control and Automation, Athens, Greece (2007), paper T028-015 Google Scholar
  33. 33.
    Arrieta, O., Visioli, A., Vilanova, R.: Improved PID autotuning for balanced control operation. In: Proc. IEEE Conference on Emerging Technologies and Factory Automation, Mallorca, Spain, pp. 1–8 (2009) CrossRefGoogle Scholar
  34. 34.
    Arrieta, O., Visioli, A., Vilanova, R.: PID autotuning for weighted servo/regulator control operation. J. Process Control 20, 472–480 (2010) CrossRefGoogle Scholar
  35. 35.
    Arrieta, O., Vilanova, R., Visioli, A.: Proportional-Integral-Derivative tuning for servo/regulation control operation for unstable and integrating processes. Ind. Eng. Chem. Res. 50(6), 3327–3334 (2011) CrossRefGoogle Scholar
  36. 36.
    Arvanitis, K.G., Akritidis, C.B., Pasgianos, G.D., Sigrimis, N.A.: Controller tuning for second order dead-time fertigation mixing process. In: Proc. EurAgEng Conference on Agricultural Engineering (2000). Paper No 00-AE-011 Google Scholar
  37. 37.
    Arvanitis, K.G., Sigrimis, N.A., Pasgianos, G.D., Kalogeropoulos, G.: On-line controller tuning for unstable processes with application to a biological reactor. In: Proc. IFAC Conference on Modelling and Control in Agriculture, Horticulture and Post-Harvest Processing, Waneningen, The Netherlands, pp. 191–196 (2000) Google Scholar
  38. 38.
    Arvanitis, K.G., Syrkos, G., Stellas, I.Z., Sigrimis, N.A.: Controller tuning for integrating processes with time delay. Part I: IPDT processes and the pseudo-derivative feedback control configuration. In: Proc. 11th Mediterranean Conference on Control and Automation (2003). Paper No. T7-040 Google Scholar
  39. 39.
    Arvanitis, K.G., Syrkos, G., Stellas, I.Z., Sigrimis, N.A.: Controller tuning for integrating processes with time delay. Part III: The case of first order plus integral plus dead-time processes. In: Proc. 11th Mediterranean Conference on Control and Automation (2003). Paper No. T7-042 Google Scholar
  40. 40.
    Åström, K.J.: Ziegler–Nichols auto-tuner. Report TFRT–3167, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden (1982) Google Scholar
  41. 41.
    Åström, K.J.: Tuning and adaptation. In: Proc. IFAC World Congress, San Francisco, USA, pp. 1–18 (1996). Plenary Volume Google Scholar
  42. 42.
    Åström, K.J., Hägglund, T.: Automatic tuning of simple regulators with specifications on phase and amplitude margins. Automatica 20, 645–651 (1984) MATHCrossRefGoogle Scholar
  43. 43.
    Åström, K.J., Hägglund, T.: Automatic Tuning of PID Controllers. Instrument Society of America, North Carolina, USA (1988) Google Scholar
  44. 44.
    Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design and Tuning. Instrument Society of America, North Carolina, USA (1995) Google Scholar
  45. 45.
    Åström, K.J., Hägglund, T.: The future of PID control. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 19–30 (2000) Google Scholar
  46. 46.
    Åström, K.J., Hägglund, T.: Benchmark systems for PID control. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 181–182 (2000) Google Scholar
  47. 47.
    Åström, K.J., Hägglund, T.: Revisiting the Ziegler–Nichols step response method for PID control. J. Process Control 14, 635–650 (2004) CrossRefGoogle Scholar
  48. 48.
    Åström, K.J., Hägglund, T.: Advanced PID control. Instrument Society of America, North Carolina, USA (2006) Google Scholar
  49. 49.
    Åström, K.J., Hägglund, T., Hang, C.C., Ho, W.K.: Automatic tuning and adaptation for PID controllers—a survey. Control Eng. Pract. 1, 699–714 (1993) CrossRefGoogle Scholar
  50. 50.
    Åström, K.J., Lee, T.H., Tan, K.K., Johansson, K.H.: Recent advances in relay feedback methods—a survey. In: Proc. IEEE International Conference on Syst., Man, Cybernetics, Vancouver, British Columbia, pp. 2616–2621 (1995) Google Scholar
  51. 51.
    Atherton, D.P., Boz, A.F.: Using standard forms for controller design. In: Proc. UKACC International Conference on Control, Swansea, UK, pp. 1066–1071 (1998) CrossRefGoogle Scholar
  52. 52.
    Atherton, D.P., Majhi, S.: Tuning of optimum PIPD controllers. In: Proc. Third Portuguese Conference on Automatic Control, Coimbra, Portugal, pp. 549–554 (1998) Google Scholar
  53. 53.
    Atkinson, P.: Feedback Control Theory for Engineers. Heinemann, London (1968) Google Scholar
  54. 54.
    Auslander, D.M., Takahashi, Y., Tomizuka, M.: The next generation of single loop controllers: hardware and algorithms for the discrete/decimal process controller. Trans. ASME J. Dyn. Syst. Meas. Control 97(3), 280–282 (1975) CrossRefGoogle Scholar
  55. 55.
    Bai, J., Zhang, X.: A new adaptive PI controller and its application in HVAC systems. Energy Convers. Manag. 48, 1043–1054 (2007) MathSciNetCrossRefGoogle Scholar
  56. 56.
    Bain, D.M., Martin, G.D.: Simple PID tuning and PID closed-loop simulation. In: Proc. American Control Conference, pp. 338–342 (1983) Google Scholar
  57. 57.
    Barberà, E.: First order plus dead-time (FOPDT) processes: a new procedure for tuning PI and PID controllers (2006). Available at http://www.angel.qui.ub.es/abstracts/T10-004.pdf. Cited 9 May 2006
  58. 58.
    Bateson, N.: Introduction to Control System Technology. Prentice-Hall, New York (2002) Google Scholar
  59. 59.
    Bekker, J.E., Meckl, P.H., Hittle, D.C.: A tuning method for first-order processes with PI controllers. ASHRAE Trans. 97(2), 19–23 (1991) Google Scholar
  60. 60.
    Belanger, P.W., Luyben, W.L.: Design of low-frequency compensators for improvement of plantwide regulatory performances. Ind. Eng. Chem. Res. 36, 5339–5347 (1997) CrossRefGoogle Scholar
  61. 61.
    Benjanarasuth, T., Ngamwiwit, J., Komine, N., Ochiai, Y.: CDM based two-degree of freedom PID controllers tuning formulas. Proc. Sch. Inf. Technol. Electron. Tokai Univ., Ser. E 30, 53–58 (2005). Available at http://ci.nii.ac.jp/vol_issue/nels/AA11898836/ISS0000391486_jp.html. Cited 4 January 2011 Google Scholar
  62. 62.
    Bequette, B.W.: Process Control: Modeling, Design and Simulation. Pearson Education, New Jersey (2003) Google Scholar
  63. 63.
    Bi, Q., Cai, W.-J., Lee, E.-L., Wang, Q.-G., Hang, C.-C., Zhang, Y.: Robust identification of first-order plus dead-time model from step response. Control Eng. Pract. 7, 71–77 (1999) CrossRefGoogle Scholar
  64. 64.
    Bi, Q., Cai, W.-J., Wang, Q.-G., Hang, C.-C., Lee, E.-L., Sun, Y., Liu, K.-D., Zhang, Y., Zou, B.: Advanced controller auto-tuning and its application in HVAC systems. Control Eng. Pract. 8, 633–644 (2000) CrossRefGoogle Scholar
  65. 65.
    Bialkowski, W.L.: Control of the pulp and paper making process. In: Levine, W.S. (ed.) The Control Handbook, pp. 1219–1242. CRC/IEEE Press, Boca Raton (1996) Google Scholar
  66. 66.
    Blickley, G.J.: Modern control started with Ziegler–Nichols tuning. Control Eng. 2, 11–17 (1990) Google Scholar
  67. 67.
    Boe, E., Chang, H.-C.: Dynamics and tuning of systems with large delay. In: Proc. American Control Conference, pp. 1572–1578 (1988) Google Scholar
  68. 68.
    Bohl, A.H., McAvoy, T.J.: Linear feedback vs. time optimal control. II. The regulator problem. Ind. Eng. Chem. Process Des. Dev. 15, 30–33 (1976) CrossRefGoogle Scholar
  69. 69.
    Boiko, I.M.: Non-parametric tuning of PID controllers via modified second-order sliding mode algorithms. In: Proc. IFAC World Congress, Seoul, Korea, pp. 6214–6219 (2008) Google Scholar
  70. 70.
    Boiko, I.M.: Modified relay feedback test and its use for non-parametric loop tuning. In: Proc. American Control Conference, St. Louis, USA, pp. 4755–4760 (2008) Google Scholar
  71. 71.
    Boiko, I., Sun, X., Tamayo, E.: Performance analysis and tuning of variable-structure PID controllers for level process. In: Proc. 18th IEEE Conference on Control Applications, St. Petersburg, Russia, pp. 268–273 (2009) Google Scholar
  72. 72.
    Borresen, B.A., Grindal, A.: Controllability—back to basics. ASHRAE Trans. Res., 817–819 (1990) Google Scholar
  73. 73.
    Boudreau, M.A., McMillan, G.K.: New directions in bioprocess modelling and control: Appendix C—unification of controller tuning relationships (2006). Available at http://www.modelingandcontrol.com/NewDirectionsAppendixC.pdf. Cited 4 January 2011
  74. 74.
    Brambilla, A., Chen, S., Scali, C.: Robust tuning of conventional controllers. Hydrocarb. Process. 53–58 (1990) Google Scholar
  75. 75.
    Branica, I., Petrović, I., Perić, N.: Toolkit for PID dominant pole design. In: Proc. 9th IEEE Conference on Electronics, Circuits and Syst., vol. 3, pp. 1247–1250 (2002) CrossRefGoogle Scholar
  76. 76.
    Bryant, G.F., Iskenderoglu, E.F., McClure, C.H.: Design of controllers for time delay systems. In: Bryant, G.F. (ed.) Automation of Tandem Mills, pp. 81–106. The Iron and Steel Institute, London (1973) Google Scholar
  77. 77.
    Buckley, P.S.: Techniques of Process Control. Wiley, New York (1964) Google Scholar
  78. 78.
    Buckley, P., Shunta, J., Luyben, W.: Design of distillation column control systems. Butterworth-Heinemann, London (1985) Google Scholar
  79. 79.
    Bucz, Š., Marič, L., Harsányi, L., Veselý, V.: A simple robust PID controller design method based on sine wave identification of the uncertain plant. J. Electr. Eng. 61(3), 164–170 (2010) CrossRefGoogle Scholar
  80. 80.
    Bueno, S.S., De Keyser, R.M.C., Favier, G.: Auto-tuning and adaptive tuning of PID controllers. J. A, Benelux Q. J. Autom. Control 32(1), 28–34 (1991) Google Scholar
  81. 81.
    Bunzemeier, A.: Ein vorschlag zur regelung integral wirkender prozesse mit eingangsstorung. Autom.tech. Prax. 40, 26–35 (1998) (in German) Google Scholar
  82. 82.
    Byeon, J., Kim, J.-S., Chun, D., Sung, S.W., Lee, J.: Third quadrant Nyquist point for the autotuning of PI controllers. In: Proc. ICROS-SICE International Joint Conference, Fukuoka, Japan, pp. 3283–3286 (2009) Google Scholar
  83. 83.
    Calcev, G., Gorez, R.: Iterative techniques for PID controller tuning. In: Proc. 34th Conference on Decision and Control, New Orleans, USA, pp. 3209–3210 (1995) Google Scholar
  84. 84.
    Callender, A.: Preliminary notes on automatic control. I.C.I. Alkali Ltd., Northwich, UK, Central File No. R.525/15/3 (1934) Google Scholar
  85. 85.
    Callender, A., Stevenson, A.B.: Automatic control of variable physical characteristics. US patent 2,175,985 (1939) Google Scholar
  86. 86.
    Callender, A., Hartree, D.R., Porter, A.: Time-lag in a control system. Philos. Trans. R. Soc. Lond. Ser. A 235, 415–444 (1935/1936) CrossRefGoogle Scholar
  87. 87.
    Camacho, O.E., Smith, C., Chacón, E.: Toward an implementation of sliding mode control to chemical processes. In: Proc. IEEE International Symposium on Industrial Electronics, Guimarães, Portugal, vol. 3, pp. 1101–1105 (1997) Google Scholar
  88. 88.
    Carr, D.: AN-CNTL-13: PID control and controller tuning techniques (1986). Available at http://www.eurotherm.com/training/tutorial/instrumentation/an13_2.doc. Cited 3 September 2004
  89. 89.
    Chandrashekar, R., Sree, R.P., Chidambaram, M.: Design of PI/PID controllers for unstable systems with time delay by synthesis method. Indian Chem. Eng. Sect. A 44(2), 82–88 (2002) Google Scholar
  90. 90.
    Chang, D.-M., Yu, C.-C., Chien, I.-L.: Identification and control of an overshoot lead-lag plant. J. Chin. Inst. Chem. Eng. 28, 79–89 (1997) Google Scholar
  91. 91.
    Chao, H., Luo, Y., Di, L., Chen, Y.Q.: Roll-channel fractional order controller design for a small fixed-wing unmanned aerial vehicle. Control Eng. Pract. 18, 761–772 (2010) CrossRefGoogle Scholar
  92. 92.
    Chao, Y.-C., Lin, H.-S., Guu, Y.-W., Chang, Y.-H.: Optimal tuning of a practical PID controller for second order processes with delay. J. Chin. Inst. Chem. Eng. 20, 7–15 (1989) Google Scholar
  93. 93.
    Chau, P.C.: Process Control—A First Course with MATLAB. Cambridge University Press, New York (2002) Google Scholar
  94. 94.
    Chen, G.: Conventional and fuzzy PID controllers: an overview. Int. J. Intell. Control Syst. 1, 235–246 (1996) MathSciNetCrossRefGoogle Scholar
  95. 95.
    Chen, D., Seborg, D.E.: PI/PID controller design based on direct synthesis and disturbance rejection. Ind. Eng. Chem. Res. 41, 4807–4822 (2002) CrossRefGoogle Scholar
  96. 96.
    Chen, Y., Won, S.: Simple fuzzy PID controller tuning of integrating process with dead time. In: Proc. International Conference on Control, Automation and Syst., Seoul, Korea, pp. 618–622 (2008) CrossRefGoogle Scholar
  97. 97.
    Chen, F., Yang, Z.: Self-tuning PM method and its formulas deduction in PID regulators. Acta Autom. Sin. 19(6), 736–740 (1993) (in Chinese) Google Scholar
  98. 98.
    Chen, C.-L., Yang, S.-F.: PI tuning based on peak amplitude ratio. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 195–198 (2000) Google Scholar
  99. 99.
    Chen, C.-L., Huang, H.-P., Lo, H.-C.: Tuning of PID controllers for self-regulating processes. J. Chin. Inst. Chem. Eng. 28, 313–327 (1997) Google Scholar
  100. 100.
    Chen, C.-L., Hsu, S.-H., Huang, H.-P.: Tuning PI/PD controllers based on gain/phase margins and maximum closed loop magnitude. J. Chin. Inst. Chem. Eng. 30, 23–29 (1999) Google Scholar
  101. 101.
    Chen, C.-L., Huang, H.-P., Hsieh, C.-T.: Tuning of PI/PID controllers based on specification of maximum closed-loop amplitude ratio. J. Chem. Eng. Jpn. 32, 783–788 (1999) CrossRefGoogle Scholar
  102. 102.
    Chen, P., Zhang, W., Zhu, L.: Design and tuning method of PID controller for a class of inverse response processes. In: Proc. American Control Conference, Minneapolis, USA, pp. 274–279 (2006) Google Scholar
  103. 103.
    Chen, C.-C., Huang, H.-P., Liaw, H.-J.: Set-point weighted PID controller tuning for time-delayed unstable processes. Ind. Eng. Chem. Res. 47, 6983–6990 (2008) CrossRefGoogle Scholar
  104. 104.
    Chen, Y., Bhaskaran, T., Xue, D.: Practical tuning rule development for fractional order proportional and integral controllers. J. Comput. Nonlinear Dyn. 3, 021403 (2008) CrossRefGoogle Scholar
  105. 105.
    Cheng, G.S., Hung, J.C.: A least-squares based self-tuning of PID controller. In: Proc. IEEE South East Conference, Raleigh, USA, pp. 325–332 (1985) Google Scholar
  106. 106.
    Cheng, Y.-C., Yu, C.-C.: Nonlinear process control using multiple models: relay feedback approach. Ind. Eng. Chem. Res. 39, 420–431 (2000) CrossRefGoogle Scholar
  107. 107.
    Chesmond, C.J.: Control System Technology. Edward Arnold, London (1982) Google Scholar
  108. 108.
    Chidambaram, M.: Design of PI controllers for integrator/dead-time processes. Hung. J. Ind. Chem. 22, 37–39 (1994) Google Scholar
  109. 109.
    Chidambaram, M.: Design formulae for PID controllers. Indian Chem. Eng. Sect. A 37(3), 90–94 (1995) Google Scholar
  110. 110.
    Chidambaram, M.: Design of PI and PID controllers for an unstable first-order plus time delay system. Hung. J. Ind. Chem. 23, 123–127 (1995) Google Scholar
  111. 111.
    Chidambaram, M.: Control of unstable systems: a review. J. Energy Heat Mass Transf. 19, 49–56 (1997) Google Scholar
  112. 112.
    Chidambaram, M.: Applied Process Control. Allied Publishers PVT, Delhi (1998) Google Scholar
  113. 113.
    Chidambaram, M.: Set point weighted PI/PID controllers for stable systems. Chem. Eng. Commun. 179, 1–13 (2000) CrossRefGoogle Scholar
  114. 114.
    Chidambaram, M.: Set-point weighted PI/PID controllers for integrating plus dead-time processes. In: Proc. National Symposium on Intelligent Measurement and Control, Chennai, India, pp. 324–331 (2000) Google Scholar
  115. 115.
    Chidambaram, M.: Set-point weighted PI/PID controllers for unstable first-order plus time delay systems. In: Proc. International Conference on Communications, Control and Signal Processing, Bangalore, India, pp. 173–177 (2000) Google Scholar
  116. 116.
    Chidambaram, M.: Computer Control of Processes. Alpha Science International, Oxford (2002) Google Scholar
  117. 117.
    Chidambaram, M., Kalyan, V.S.: Robust control of unstable second order plus time delay systems. In: Proc. International Conference on Advances in Chemical Engineering, Chennai, India, pp. 277–280 (1996) Google Scholar
  118. 118.
    Chidambaram, M., Sree, R.P.: A simple method of tuning PID controllers for integrator/dead-time processes. Comput. Chem. Eng. 27, 211–215 (2003) CrossRefGoogle Scholar
  119. 119.
    Chidambaram, M., Sree, R.P., Srinivas, M.N.: Reply to the comments by Dr. A. Abbas on “A simple method of tuning PID controllers for stable and unstable FOPTD systems” [Comp. Chem. Engineering V28 (2004) 2201–2218]. Comput. Chem. Eng. 29, 1155 (2005) CrossRefGoogle Scholar
  120. 120.
    Chien, I.-L.: IMC-PID controller design—an extension. In: Proc. IFAC Adaptive Control of Chemical Processes Conference, Copenhagen, Denmark, pp. 147–152 (1988) Google Scholar
  121. 121.
    Chien, I.-L.: Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time. Ind. Eng. Chem. Res. 42, 4461–4477 (2003) CrossRefGoogle Scholar
  122. 122.
    Chien, I.-L., Fruehauf, P.S.: Consider IMC tuning to improve controller performance. Chem. Eng. Prog. 33–41 (1990) Google Scholar
  123. 123.
    Chien, I.-L., Huang, H.-P., Yang, J.-C.: A simple multiloop tuning method for PID controllers with no proportional kick. Ind. Eng. Chem. Res. 38, 1456–1468 (1999) CrossRefGoogle Scholar
  124. 124.
    Chien, I.-L., Chung, Y.-C., Chen, B.-S., Chuang, C.-Y.: Simple PID controller tuning method for processes with inverse response plus dead time or large overshoot response plus dead time. Ind. Eng. Chem. Res. 42, 4461–4477 (2003) CrossRefGoogle Scholar
  125. 125.
    Chien, K.L., Hrones, J.A., Reswick, J.B.: On the automatic control of generalised passive systems. Trans. ASME 74, 175–185 (1952) Google Scholar
  126. 126.
    Chiu, K.C., Corripio, A.B., Smith, C.L.: Digital controller algorithms. Part III. Tuning PI and PID controllers. Instrum. Control Syst. December, 41–43 (1973) Google Scholar
  127. 127.
    Chun, D., Choi, J.Y., Lee, J.: Parallel compensation with a secondary measurement. Ind. Eng. Chem. Res. 38, 1575–1579 (1999) CrossRefGoogle Scholar
  128. 128.
    Clarke, D.W.: PI auto-tuning during a single transient. IEE Proc., Control Theory Appl. 153(6), 671–683 (2006) CrossRefGoogle Scholar
  129. 129.
    Cluett, W.R., Wang, L.: New tuning rules for PID control. Pulp Pap. Can. 3(6), 52–55 (1997) MathSciNetGoogle Scholar
  130. 130.
    Cogan, B., de Paor, A.M., Quinn, A.: PI control of first-order lag plus time-delay plants: root locus design for optimal stability. Trans. Inst. Meas. Control 31(5), 365–379 (2009) CrossRefGoogle Scholar
  131. 131.
    Cohen, G.H., Coon, G.A.: Theoretical considerations of retarded control. Trans. ASME 75, 827–834 (1953) Google Scholar
  132. 132.
    Cominos, P., Munro, N.: PID controllers: recent tuning methods and design to specification. IEE Proc., Control Theory Appl. 149(1), 46–53 (2002) CrossRefGoogle Scholar
  133. 133.
    Connell, B.: Process Instrumentation Applications Manual. McGraw-Hill, New York (1996) Google Scholar
  134. 134.
    ControlSoft Inc.: PID loop tuning pocket guide (Version 2.2, DS405–02/05) (2005). Available at http://www.controlsoftinc.com. Cited 30 June 2005
  135. 135.
    Coon, G.A.: How to find controller settings from process characteristics. Control Eng. 3, 66–76 (1956) Google Scholar
  136. 136.
    Coon, G.A.: Control charts for proportional action. ISA J. 11, 81–82 (1964) Google Scholar
  137. 137.
    Cooper, D.J.: PID control of the heat exchanger (2006). Available at http://www.controlguru.com/wp/p78.html. Cited 4 January 2011
  138. 138.
    Cooper, D.J.: PID with CO filter control of the heat exchanger (2006). Available at http://www.controlguru.com/wp/p86.html. Cited 4 January 2011
  139. 139.
    Corripio, A.B.: Tuning of Industrial Control Systems. Instrument Society of America, North Carolina, USA (1990) Google Scholar
  140. 140.
    Corripio, A.B.: Tuning of Industrial Control Systems. Instrument Society of America, North Carolina, USA (2005) Google Scholar
  141. 141.
    Cox, C.S., Arden, W.J.B., Doonan, A.F.: CAD software facilities tuning of traditional and predictive control strategies. In: Proc. ISA Advances in Instrumentation and Control Conference, Anaheim, USA, vol. 49, Part 2, pp. 241–250 (1994) Google Scholar
  142. 142.
    Cox, C.S., Daniel, P.R., Lowdon, A.: Quicktune: a reliable automatic strategy for determining PI and PPI controller parameters using a FOLPD model. Control Eng. Pract. 5, 1463–1472 (1997) CrossRefGoogle Scholar
  143. 143.
    Cuesta, A., Grau, L., López, I.: CACSD tools for tuning multi-rate PID controllers in time and frequency domains. In: Proc. IEEE International Symposium on Computer Aided Control Syst. Design, Munich, Germany, pp. 3036–3041 (2006) Google Scholar
  144. 144.
    Cvejn, J.: Sub-optimal PID controller settings for FOPDT systems with long dead time. J. Process Control 19, 1486–1495 (2009) CrossRefGoogle Scholar
  145. 145.
    Davydov, N.I., Idzon, O.M., Simonova, O.V.: Determining the parameters of PID-controller settings using the transient response of the controlled plant. Therm. Eng. 42, 801–807 (1995) Google Scholar
  146. 146.
    De Oliveira, R., Corrêa, R.G., Kwong, W.H.: An IMC-PID tuning procedure based on the integral squared error (ISE) criterion: a guide tour to understand its features. In: Proc. IFAC Workshop on Control Education and Technol. Transfer Issues, Curitiba, Brazil, pp. 87–91 (1995) Google Scholar
  147. 147.
    De Paor, A.M.: A fiftieth anniversary celebration of the Ziegler–Nichols PID controller. Int. J. Electr. Eng. Educ. 30, 303–316 (1993) Google Scholar
  148. 148.
    De Paor, A.M., O’Malley, M.: Controllers of Ziegler–Nichols type for unstable processes with time delay. Int. J. Control 49, 1273–1284 (1989) MATHGoogle Scholar
  149. 149.
    Derbel, H.B.J.: Design of PID controllers for time-delay systems by the pole compensation technique. In: Proc. 6th International Multi-Conference on Syst., Signals and Devices, Djerba, Tunisia, pp. 1–6 (2009) CrossRefGoogle Scholar
  150. 150.
    Desbiens, A.: La commande automatique des systèmes dynamiques. Masters thesis, Université Laval, Canada (2008). Available at http://w3.gel.ulaval.ca/~desbiens/GEL-21946/NotesDeCours/master.pdf (in French). Cited 14 December 2010.
  151. 151.
    Devanathan, R.: An analysis of minimum integrated error solution with application to self-tuning controller. J. Electr. Electron. Eng. Aust. 11, 172–177 (1991) Google Scholar
  152. 152.
    Dutton, K., Thompson, S., Barraclough, B.: The Art of Control Engineering. Addison-Wesley Longman, Boston (1997) Google Scholar
  153. 153.
    ECOSSE Team: The ECOSSE Control Hypercourse (1996). Available at http://eweb.chemeng.ed.ac.uk/courses/control/course/map/controllers/correlations.html. Cited 4 January 2011
  154. 154.
    ECOSSE Team: The ECOSSE Control Hypercourse (1996). Available at http://eweb.chemeng.ed.ac.uk/courses/control/course/map/controllers/damped.html. Cited 4 January 2011
  155. 155.
    Edgar, T.F., Smith, C.L., Shinskey, F.G., Gassman, G.W., Schafbuch, P.J., McAvoy, T.J., Seborg, D.E.: Process Control in Perry’s Chemical Engineers’ Handbook, vol. 8, pp. 1–84. McGraw-Hill International, New York (1997). Editors R.H. Perry and D.W. Green Google Scholar
  156. 156.
    Ender, D.B.: Process control performance: not as good as you think. Control Eng. 40, 180–190 (1993) Google Scholar
  157. 157.
    Entech Control Engineering Ltd.: Competency in Process Control—Industry Guidelines (1994). Version 1.0, 3/94 Google Scholar
  158. 158.
    Eriksson, L.: PID controller design and tuning in networked control systems. Ph.D. thesis, Helsinki University of Technology, Finland (2008) Google Scholar
  159. 159.
    Eriksson, L.M., Johansson, M.: PID controller tuning rules for varying time-delay systems. In: Proc. American Control Conference, New York City, USA, pp. 619–625 (2007) CrossRefGoogle Scholar
  160. 160.
    Eriksson, L.M., Johansson, M.: Simple PID tuning rules for varying time-delay systems. In: Proc. 46th IEEE Conference on Decision and Control, New Orleans, USA, pp. 1801–1807 (2007) CrossRefGoogle Scholar
  161. 161.
    Eriksson, L., Oksanen, T., Mikkola, K.: PID controller tuning rules for integrating processes with varying time delays. J. Franklin Inst. 346(5), 470–487 (2009) MATHCrossRefGoogle Scholar
  162. 162.
    Ettaleb, L., Roche, A.: On-line tuning of malfunctioning control loops. In: Proc. Control Syst. 2000, Victoria, Canada, pp. 139–144 (2000) Google Scholar
  163. 163.
    Faanes, A., Skogestad, S.: pH-neutralization: integrated process and control design. Comput. Chem. Eng. 28, 1475–1487 (2004) CrossRefGoogle Scholar
  164. 164.
    Farrington, G.H.: Communications on “The practical application of frequency response analysis to automatic process control”. Proc. Inst. Mech. Eng. 162, 346–347 (1950) Google Scholar
  165. 165.
    Fertik, H.A.: Tuning controllers for noisy processes. ISA Trans. 14, 292–304 (1975) Google Scholar
  166. 166.
    Fertik, H.A., Sharpe, R.: Optimizing the computer control of breakpoint chlorination. In: Advances in Instrumentation: Proc. ISA Conference and Exhibit, Chicago, USA, vol. 34, Part 1, pp. 373–386 (1979) Google Scholar
  167. 167.
    Fisher, D.G.: Process control: an overview and personal perspective. Can. J. Chem. Eng. 69, 5–26 (1991) CrossRefGoogle Scholar
  168. 168.
    Fliess, M., Join, C.: Intelligent PID controllers. In: Proc. 16th Mediterranean Conference on Control and Automation, Ajaccio, France, pp. 326–331 (2008) CrossRefGoogle Scholar
  169. 169.
    Foley, M.W., Ramharack, N.R., Copeland, B.R.: Comparison of PI controller tuning methods. Ind. Eng. Chem. Res. 44(17), 6741–6750 (2005) CrossRefGoogle Scholar
  170. 170.
    Ford, R.L.: The determination of the optimum process-controller settings and their confirmation by means of an electronic simulator. IEE Proc., Part 2 101, 141–155 (1953) Google Scholar
  171. 171.
    Ford, R.L.: The determination of the optimum process-controller settings and their confirmation by means of an electronic simulator. IEE Proc., Part 2 101, 173–177 (1953) Google Scholar
  172. 172.
    Frank, P.M., Lenz, R.: Entwurf erweiterter PI-regler für totzeitstrecken mit verzögerung erster ordnung. ETZ, Elektrotech. Z., Ausg. A 90(3), 57–63 (1969) (in German) Google Scholar
  173. 173.
    Friman, M., Waller, K.V.: A two channel relay for autotuning. Ind. Eng. Chem. Res. 36, 2662–2671 (1997) CrossRefGoogle Scholar
  174. 174.
    Fruehauf, P.S., Chien, I.-L., Lauritsen, M.D.: Simplified IMC-PID tuning rules. In: Proc. ISA Advances in Instrumentation and Control Conference, Chicago, USA, vol. 48, pp. 1745–1766 (1993) Google Scholar
  175. 175.
    Fukura, S., Tanura, H.: PI controller tuning of second order lag plus dead time processes subject to a reference input. Trans. Soc. Instrum. Control Eng. 19(6), 514–515 (1983) Google Scholar
  176. 176.
    Gaikward, R., Chidambaram, M.: Design of PID controllers for unstable systems. In: Proc. National Symposium on Intelligent Measurement and Control, Chennai, India, pp. 332–339 (2000) Google Scholar
  177. 177.
    Gallier, P.W., Otto, R.E.: Self-tuning computer adapts DDC algorithms. Instrum. Technol. 65–70 (1968) Google Scholar
  178. 178.
    García, R.F., Castelo, F.J.P.: A complement to autotuning methods on PID controllers. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 101–104 (2000) Google Scholar
  179. 179.
    Geng, G., Geary, G.M.: On performance and tuning of PID controllers in HVAC systems. In: Proc. 2nd IEEE Conference on Control Applications, Vancouver, Canada pp. 819–824 (1993) CrossRefGoogle Scholar
  180. 180.
    Gerry, J.P.: How to control processes with large dead times (1998). Available at http://www.expertune.com/artdt.html. Cited 4 January 2011
  181. 181.
    Gerry, J.P.: Tuning process controllers starts in manual (1999). Available at http://www.expertune.com/ArtInTechMay99.html. Cited 4 January 2011
  182. 182.
    Gerry, J.P.: How to control a process with long dead time (2003). Available at http://www.expertune.com/learncast.html. Cited 27 June 2005
  183. 183.
    Gerry, J.P., Hansen, P.D.: Choosing the right controller. Chem. Eng. 25, 65–68 (1987) Google Scholar
  184. 184.
    Gong, X.F.: Normalised tuning method of PID controller parameters. J. Zhejiang Univ. Sci. 43(1), 43–48 (2000) (in Chinese) Google Scholar
  185. 185.
    Gong, X., Gao, J., Zhou, C.: Extension of IMC tuning to improve controller performance. In: Proc. IEEE International Conference on Syst., Man and Cybernetics, pp. 1770–1775 (1996) Google Scholar
  186. 186.
    Gong, X.F., Gao, J., Zhou, C.: Extension of IMC tuning of PID control parameter. Control Decis. 13(4), 337–341 (1998) (in Chinese) Google Scholar
  187. 187.
    Gonzalez, A.M.: Un planteamiento continuo de la autosintonia de controladores PI y PID. Ph.D. dissertation, Dept. de Informatica y Automatica, UNED, Madrid, Spain (1994) (in Spanish) Google Scholar
  188. 188.
    Goodwin, G.C., Graebe, S.F., Salgado, M.E.: Control System Design. Prentice Hall, New Jersey (2001) Google Scholar
  189. 189.
    Gorecki, H., Fuska, S., Grabowski, P., Korytowski, A.: Analysis and Synthesis of Time Delay Systems. Wiley, New York (1989) MATHGoogle Scholar
  190. 190.
    Gorez, R.: A survey of PID auto-tuning methods. J. A, Benelux Q. J. Autom. Control 38, 3–10 (1997) Google Scholar
  191. 191.
    Gorez, R.: New design relations for 2-DOF PID-like control systems. Automatica 39, 901–908 (2003) MathSciNetMATHCrossRefGoogle Scholar
  192. 192.
    Gorez, R., Klàn, P.: Nonmodel-based explicit design relations for PID controllers. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 141–148 (2000) Google Scholar
  193. 193.
    GPG346 Good Practice Guide: The Carbon Trust. Improving the effectiveness of basic closed loop control systems. Available at http://www.carbontrust.co.uk/Publications/pages/publicationdetail.aspx?id=GPG346. Cited 4 January 2011
  194. 194.
    Gu, D., Zhang, W.: Design of an H based PI controller for AQM routers supporting TCP flows. In: Proc. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, China, pp. 603–608 (2009) Google Scholar
  195. 195.
    Gu, D., Liu, T., Zhang, W.: Study on the relationship between two typical modelling methods in process control. In: Proc. 42nd IEEE Conference on Decision and Control, Maui, USA, pp. 4082–4083 (2003) Google Scholar
  196. 196.
    Gude, J.J., Kahoraho, E.: New tuning rules for PI and fractional PI controllers. In: Proc. AdChem, Istanbul, Turkey (2009) Google Scholar
  197. 197.
    Haalman, A.: Adjusting controllers for a deadtime process. Control Eng. July, 71–73 (1965) Google Scholar
  198. 198.
    Haeri, M.: Tuning rules for the PID controller using a DMC strategy. Asian J. Control 4, 410–417 (2002) CrossRefGoogle Scholar
  199. 199.
    Haeri, M.: PI design based on DMC strategy. Trans. Inst. Meas. Control 27, 21–36 (2005) CrossRefGoogle Scholar
  200. 200.
    Hägglund, T., Åström, K.J.: Industrial adaptive controllers based on frequency response techniques. Automatica 27, 599–609 (1991) CrossRefGoogle Scholar
  201. 201.
    Hägglund, T., Åström, K.J.: Revisiting the Ziegler–Nichols tuning rules for PI control. Asian J. Control 4, 364–380 (2002) CrossRefGoogle Scholar
  202. 202.
    Hägglund, T., Åström, K.J.: Revisiting the Ziegler–Nichols tuning rules for PI control—Part II. The frequency response method. Asian J. Control 6(4), 469–482 (2004) CrossRefGoogle Scholar
  203. 203.
    Hang, C.C., Åström, K.J.: Refinements of the Ziegler–Nichols tuning formulae for PID auto-tuners. In: Proc. ISA International Conference and Exhibition. Advances in Instrumentation, vol. 43, pp. 1021–1030 (1988) Google Scholar
  204. 204.
    Hang, C.C., Åström, K.J.: Practical aspects of PID auto-tuners based on relay feedback. In: Proc. IFAC Adaptive control of Chemical Processes Conference, Copenhagen, Denmark, pp. 153–158 (1988) Google Scholar
  205. 205.
    Hang, C.C., Cao, L.: Improvement of transient response by means of variable set-point weighting. IEEE Trans. Ind. Electron. 43, 477–484 (1996) CrossRefGoogle Scholar
  206. 206.
    Hang, C.C., Åström, K.J., Ho, W.K.: Refinements of the Ziegler–Nichols tuning formula. IEE Proc. Part D. Control Theory Appl. 138, 111–118 (1991) CrossRefGoogle Scholar
  207. 207.
    Hang, C.C., Ho, W.K., Cao, L.S.: A comparison of two design methods for PID controllers. In: Proc. ISA Advances in Instrumentation and Control Conference, Chicago, USA, vol. 48, pp. 959–967 (1993) Google Scholar
  208. 208.
    Hang, C.C., Lee, T.H., Ho, W.K.: Adaptive Control. Instrument Society of America, North Carolina, USA (1993) Google Scholar
  209. 209.
    Hang, C.C., Ho, W.H., Cao, L.S.: A comparison of two design methods for PID controllers. ISA Trans. 33, 147–151 (1994) CrossRefGoogle Scholar
  210. 210.
    Hang, C.C., Åström, K.J., Wang, Q.G.: Relay feedback auto-tuning of process controllers—a tutorial review. J. Process Control 12, 143–162 (2002) CrossRefGoogle Scholar
  211. 211.
    Hansen, P.D.: Controller structure and tuning for unmeasured load disturbance. In: Proc. American Control Conference, Philadelphia, USA, vol. 1, pp. 131–136 (1998) Google Scholar
  212. 212.
    Hansen, P.D.: Robust adaptive PID controller tuning for unmeasured load rejection. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 487–494 (2000) Google Scholar
  213. 213.
    Harriott, P.: Process Control. McGraw-Hill, New York (1964) Google Scholar
  214. 214.
    Harriott, P.: Optimum controller settings for processes with dead time: effects of type and location of disturbance. Ind. Eng. Chem. Res. 27(11), 2060–2063 (1988) MathSciNetCrossRefGoogle Scholar
  215. 215.
    Harris, T.J., Tyreus, B.D.: Comments on internal model control. 4. PID controller design. Ind. Eng. Chem. Res. 26, 2161–2162 (1987) CrossRefGoogle Scholar
  216. 216.
    Harrold, D.: Process controller tuning guidelines. Control Eng. (1999). Available at http://www.smartsys.bg/index.php?page=Engineering&ask=PCTG. Cited 10 January 2012
  217. 217.
    Hartree, D.R., Porter, A., Callender, A., Stevenson, A.B.: Time-lag in a control system—II. Proc. R. Soc. Lond. A 161, 460–476 (1937) MATHCrossRefGoogle Scholar
  218. 218.
    Hassan, G.A.: Computer-aided tuning of analog and digital controllers. Control Comput. 21(1), 1–6 (1993) Google Scholar
  219. 219.
    Hay, J.: Regeltechniek 1. Die Keure n.v., Brugge (1998) (in Flemish) Google Scholar
  220. 220.
    Hazebroek, P., Van der Waerden, B.L.: The optimum tuning of regulators. Trans. ASME 72, 317–322 (1950) Google Scholar
  221. 221.
    Heck, E.: Stetige Regler an Regelstrecken—bestehend aus Verzögerungsgliedern erster Ordnung. Heiz. Lüft. Haustech. 20(9), 333–337 (1969) (in German) Google Scholar
  222. 222.
    Henry, J., Schaedel, H.M.: International co-operation in control engineering education using online experiments. Eur. J. Eng. Educ. 30(2), 265–274 (2005) CrossRefGoogle Scholar
  223. 223.
    Hersh, M.A., Johnson, M.A.: A study of advanced control systems in the workplace. Control Eng. Pract. 5(6), 771–778 (1997) CrossRefGoogle Scholar
  224. 224.
    Hill, A.G., Adams, C.B.: Effect of disturbance dynamics on optimum control of 3rd and 4th order processes. In: Proc. ISA International Conference and Exhibition, Houston, USA, vol. 43, Part 3, pp. 967–983 (1988) Google Scholar
  225. 225.
    Hill, A.G., Venable, S.W.: The effect of model error on optimum PID controller tuning. In: Proc. ISA International Conference and Exhibition, Philadelphia, USA, vol. 44, Part 1, pp. 51–64 (1989) Google Scholar
  226. 226.
    Hiroi, K., Terauchi, Y.: Two degrees of freedom algorithm. In: Proc. ISA International Conference and Exhibition. Advances in Instrumentation, pp. 789–796 (1986) Google Scholar
  227. 227.
    Ho, W.K., Xu, W.: PID tuning for unstable processes based on gain and phase-margin specifications. IEE Proc., Control Theory Appl. 145, 392–396 (1998) CrossRefGoogle Scholar
  228. 228.
    Ho, W.K., Hang, C.C., Zhou, J.H., Yip, C.K.: Adaptive PID control of a process with underdamped response. In: Proc. Asian Control Conference, Tokyo, Japan, pp. 335–338 (1994) Google Scholar
  229. 229.
    Ho, W.K., Hang, C.C., Cao, L.S.: Tuning of PID controllers based on gain and phase margin specifications. Automatica 31, 497–502 (1995) MathSciNetMATHCrossRefGoogle Scholar
  230. 230.
    Ho, W.K., Hang, C.C., Zhou, J.: Self-tuning PID control of a plant with under-damped response with specifications on gain and phase margins. IEEE Trans. Control Syst. Technol. 5, 446–452 (1997) CrossRefGoogle Scholar
  231. 231.
    Ho, W.K., Lim, K.W., Xu, W.: Optimal gain and phase margin tuning for PID controllers. Automatica 34, 1009–1014 (1998) MATHCrossRefGoogle Scholar
  232. 232.
    Ho, W.K., Lim, K.W., Hang, C.C., Ni, L.Y.: Getting more phase margin and performance out of PID controllers. Automatica 35, 1579–1585 (1999) MATHCrossRefGoogle Scholar
  233. 233.
    Ho, W.K., Lee, T.H., Han, H.P., Hong, Y.: Self-tuning IMC-PID control with interval gain and phase margins assignment. IEEE Trans. Control Syst. Technol. 9, 535–541 (2001) CrossRefGoogle Scholar
  234. 234.
    Horn, I.G., Arulandu, J.R., Gombas, C.J., Van Antwerp, J.G., Braatz, R.D.: Improved filter design in internal model control. Ind. Eng. Chem. Res. 35, 3437–3441 (1996) CrossRefGoogle Scholar
  235. 235.
    Hougen, J.O.: Measurement and Control Applications. Instrument Society of America, North Carolina, USA (1979) Google Scholar
  236. 236.
    Hougen, J.O.: A software program for process controller parameter selection. In: Proc. ISA International Conference and Exhibition. Advances in Instrumentation. vol. 43, Part 1, pp. 441–456 (1988) Google Scholar
  237. 237.
    Huang, C.-T., Lin, Y.-S.: Tuning PID controller for open-loop unstable processes with time delay. Chem. Eng. Commun. 133, 11–30 (1995) CrossRefGoogle Scholar
  238. 238.
    Huang, C.-T., Chou, C.-J., Wang, J.-L.: Tuning of PID controllers based on the second order model by calculation. J. Chin. Inst. Chem. Eng. 27, 107–120 (1996) Google Scholar
  239. 239.
    Huang, H.-P., Chao, Y.-C.: Optimal tuning of a practical digital PID controller. Chem. Eng. Commun. 18, 51–61 (1982) CrossRefGoogle Scholar
  240. 240.
    Huang, H.-P., Chen, C.-C.: Control-system synthesis for open-loop unstable process with time delay. IEE Proc., Control Theory Appl. 144, 334–346 (1997) MATHCrossRefGoogle Scholar
  241. 241.
    Huang, H.-P., Chen, C.-C.: Auto-tuning of PID controllers for second-order unstable process having dead time. J. Chem. Eng. Jpn. 32, 486–497 (1999) CrossRefGoogle Scholar
  242. 242.
    Huang, H.-P., Jeng, J.-C.: Monitoring and assessment of control performance for single loop systems. Ind. Eng. Chem. Res. 41, 1297–1309 (2002) CrossRefGoogle Scholar
  243. 243.
    Huang, H.-P., Jeng, J.-C.: Identification for monitoring and autotuning of PID controllers. J. Chem. Eng. Jpn. 36, 284–296 (2003) CrossRefGoogle Scholar
  244. 244.
    Huang, H.-P., Jeng, J.-C.: Process reaction curve and relay methods—identification and PID tuning. In: Johnson, M.A., Moradi, M.H. (eds.) PID Control: New Identification and Design Methods, pp. 297–338. Springer, London (2005) Google Scholar
  245. 245.
    Huang, H.-P., Chien, I.-L., Lee, Y.-C., Wang, G.-B.: A simple method for tuning cascade control systems. Chem. Eng. Commun. 165, 89–121 (1998) CrossRefGoogle Scholar
  246. 246.
    Huang, H.-P., Lee, M.-W., Chen, C.-L.: Inverse-based design for a modified PID controller. J. Chin. Inst. Chem. Eng. 31, 225–236 (2000) Google Scholar
  247. 247.
    Huang, H.-P., Roan, M.-L., Jeng, J.-C.: On-line adaptive tuning for PID controllers. IEE Proc., Control Theory Appl. 149, 60–67 (2002) CrossRefGoogle Scholar
  248. 248.
    Huang, H.P., Luo, K.-Y., Jeng, J.-C.: Model based auto-tuning system using relay feedback. In: Proc. IFAC Advanced Control of Chemical Processes Conference, Hong Kong, China, pp. 625–630 (2003) Google Scholar
  249. 249.
    Huang, H.-P., Jeng, J.-C., Luo, K.-Y.: Auto-tune system using single-run relay feedback test and model-based controller design. J. Process Control 15, 713–727 (2005) CrossRefGoogle Scholar
  250. 250.
    Huang, H.-P., Lin, F.-Y., Jeng, J.-C.: Multi-loop PID controllers design for MIMO processes containing integrator(s). J. Chem. Eng. Jpn. 38(9), 742–756 (2005) CrossRefGoogle Scholar
  251. 251.
    Huba, M.: P- und PD-Polvorgaberegler für Regelstrecken mit begrenzter Stellgröße (P and PD pole assignment controllers for constrained systems). Automatisierungstechnik 53(6), 273–284 (2005) (in German) CrossRefGoogle Scholar
  252. 252.
    Huba, M.: Robust design of integrating controllers for IPDT plant. In: Proc. 17th International Conference on Process Control, Strbske Pleso, Slovak Republic, pp. 353–357 (2009) Google Scholar
  253. 253.
    Huba, M., Ťapák, P.: Relay identification by analyzing nonsymmetrical oscillations for single integrator with time delay. J. Cybern. Inf. 10, 68–77 (2010) Google Scholar
  254. 254.
    Huba, M., Žáková, K.: Contribution to the theoretical analysis of the Ziegler–Nichols method. J. Electr. Eng. 54(7–8), 188–194 (2003) Google Scholar
  255. 255.
    Hwang, S.-H.: Closed-loop automatic tuning of single-input-single-output systems. Ind. Eng. Chem. Res. 34, 2406–2417 (1995) CrossRefGoogle Scholar
  256. 256.
    Hwang, S.-H., Chang, H.-C.: A theoretical examination of closed-loop properties and tuning methods of single-loop PI controllers. Chem. Eng. Sci. 42, 2395–2415 (1987) CrossRefGoogle Scholar
  257. 257.
    Hwang, S.-H., Fang, S.-M.: Closed-loop tuning method based on dominant pole placement. Chem. Eng. Commun. 136, 45–66 (1995) CrossRefGoogle Scholar
  258. 258.
    Hwang, S.-H., Tseng, T.-S.: Process identification and control based on dominant pole expansions. Chem. Eng. Sci. 49(12), 1973–1983 (1994) CrossRefGoogle Scholar
  259. 259.
    Hypiusová, M., Veselý, V.: Tuning of PID controller for guaranteed performance. In: Proc. International Carpathian Control Conference, Sinaia, Romania, pp. 243–246 (2008) Google Scholar
  260. 260.
    Idzerda, H.H., Ensing, L., Janssen, J.M.L., Offereins, R.P.: Design and applications of an electronic simulator for control systems. Trans. Soc. Instrum. Technol. September, 105–122 (1955) Google Scholar
  261. 261.
    Isaksson, A.J., Graebe, S.F.: Analytical PID parameter expressions for higher order systems. Automatica 35, 1121–1130 (1999) MathSciNetMATHCrossRefGoogle Scholar
  262. 262.
    ISMC: RAPID: Robust Advanced PID Control Manual. Intelligent System Modeling and Control nv, Belgium (1999) Google Scholar
  263. 263.
    Jacob, E.F., Chidambaram, M.: Design of controllers for unstable first-order plus time delay systems. Comput. Chem. Eng. 20, 579–584 (1996) CrossRefGoogle Scholar
  264. 264.
    Jahanmiri, A., Fallahi, H.R.: New methods for process identification and design of feedback controller. Trans. Inst. Chem. Eng. 75(A), 519–522 (1997) CrossRefGoogle Scholar
  265. 265.
    Jhunjhunwala, M., Chidambaram, M.: PID controller tuning for unstable systems by optimization method. Chem. Eng. Commun. 185, 91–113 (2001) CrossRefGoogle Scholar
  266. 266.
    Jin, Q., Quan, L., Wang, X., Qi, F.: Base on all-pole approximation a new internal model PID control method for the system with time delays. In: Proc. IEEE International Conference on Mechatronics and Automation, Changchun, China, pp. 268–273 (2009) Google Scholar
  267. 267.
    Johnson, E.F.: Use of frequency response analysis in chemical engineering process control. Chem. Eng. Prog. 52(2), 64-F–68-F (1956) Google Scholar
  268. 268.
    Jones, R.W., Tham, M.T.: Control strategies for process intensified systems. In: Proc. SICE-ICASE International Joint Conference, Busan, Korea, pp. 4618–4623 (2006) CrossRefGoogle Scholar
  269. 269.
    Jones, K.O., Williams, D., Montgomery, P.A.: On-line application of an auto-tuning PID controller for dissolved oxygen concentration in a fermentation process. Trans. Inst. Meas. Control 19, 253–262 (1997) CrossRefGoogle Scholar
  270. 270.
    Juang, W.-S., Wang, F.-S.: Design of PID controller by concept of Dahlin’s Law. J. Chin. Inst. Chem. Eng. 26, 133–136 (1995) Google Scholar
  271. 271.
    Jyothi, S.N., Arvind, S., Chidambaram, M.: Design on PI/PID controller for systems with a zero. Indian Chem. Eng. Sect. A 43(4), 288–293 (2001) Google Scholar
  272. 272.
    Kamimura, K., Yamada, A., Matsuba, T., Kimbara, A., Kurosu, S., Kasahara, M.: CAT (Computer-aided tuning) software for PID controllers. ASHRAE Trans. 100(1), 180–190 (1994) Google Scholar
  273. 273.
    Kang, T.-W.: Effect of disturbance dynamics optimum control of second-order plus dead time process. Ph.D. thesis, Oklahoma State University, USA (1989) Google Scholar
  274. 274.
    Karaboga, D., Kalinli, A.: Tuning PID controller parameters using Tabu search algorithm. In: Proc. IEEE International Conference on Syst., Man and Cybernetics, pp. 134–136 (1996) Google Scholar
  275. 275.
    Kasahara, M., Matsuba, T., Murasawa, I., Hashimoto, Y., Kamimura, K., Kimbara, A., Kurosu, S.: A tuning method of two degrees of freedom PID controller. ASHRAE Trans. 103, 278–289 (1997) Google Scholar
  276. 276.
    Kasahara, M., Matsuba, T., Kuzuu, Y., Yamazaki, T., Hashimoto, Y., Kamimura, K., Kurosu, S.: Design and tuning of robust PID controller for HVAC systems. ASHRAE Trans. 105(2), 154–166 (1999) Google Scholar
  277. 277.
    Kasahara, M., Yamazaki, T., Kuzuu, Y., Hashimoto, Y., Kamimura, K., Matsuba, T., Kurosu, S.: Stability analysis and tuning of PID controller in VAV systems. ASHRAE Trans. 107, 285–296 (2001) Google Scholar
  278. 278.
    Kaya, I.: A PI-PD controller design for control of unstable and integrating processes. ISA Trans. 42, 111–121 (2003) CrossRefGoogle Scholar
  279. 279.
    Kaya, I., Atherton, D.P.: A PI-PD controller design for integrating processes. In: Proc. American Control Conference, San Diego, USA, pp. 258–262 (1999) Google Scholar
  280. 280.
    Kaya, A., Scheib, T.J.: Tuning of PID controls of different structures. Control Eng. July, 62–65 (1988) Google Scholar
  281. 281.
    Keane, M.A., Yu, J., Koza, J.R.: Automatic synthesis of both the topology and tuning of a common parameterized controller for two families of plants using genetic programming. In: Proc. Genetic and Evolutionary Computation Conference, Las Vegas, USA, pp. 496–504 (2000) Google Scholar
  282. 282.
    Keane, M.A., Koza, J.R., Streeter, M.J.: Apparatus for improved general-purpose PID and non-PID controllers. US Patent No. 6,847,851 B1 (2005) Google Scholar
  283. 283.
    Keviczky, L., Csáki, F.: Design of control systems with dead time in the time domain. Acta Tech. Acad. Sci. Hung. 74(1–2), 63–84 (1973) Google Scholar
  284. 284.
    Khan, B.Z., Lehman, B.: Setpoint PI controllers for systems with large normalised dead time. IEEE Trans. Control Syst. Technol. 4, 459–466 (1996) CrossRefGoogle Scholar
  285. 285.
    Khodabakhshian, A., Golbon, N.: Unified PID design for load frequency control. In: Proc. IEEE International Conference on Control Applications, Taipei, Taiwan, pp. 1627–1632 (2004) Google Scholar
  286. 286.
    Kim, I.-H., Fok, S., Fregene, K., Lee, D.-H., Oh, T.-S., Wang, D.W.L.: Neural-network bases system identification and controller synthesis for an industrial sewing machine. Int. J. Control. Autom. Syst. 2(1), 83–91 (2004) Google Scholar
  287. 287.
    King, R.: Private communication, 6 March 2006 Google Scholar
  288. 288.
    Kinney, T.B.: Tuning process controllers. Chem. Eng. 19, 67–72 (1983) Google Scholar
  289. 289.
    Klán, P.: Moderní metody nastavení PID regulátorů [Modern methods of setting PID controllers]. Část I: Procesy s přechodovou charakteristikou typu “S”. Automa 9, 54–57 (2000) (in Czech) Google Scholar
  290. 290.
    Klán, P.: Moderní metody nastavení PID regulátorů. Část II: Integrační procesy. Automa 1, 52–54 (2001) (in Czech) Google Scholar
  291. 291.
    Klán, P., Gorez, R.: Vyvážené nastavení PI regulátorů. Automa 4, 49–53 (2000) (in Czech) Google Scholar
  292. 292.
    Klán, P., Gorez, R.: Nastavení PI regulátorů chránící akční členy [I control with actuator preservation]. Automa 2, 50–52 (2005) (in Czech) Google Scholar
  293. 293.
    Klán, P., Gorez, R.: On aggressiveness of PI control. In: Proc. IFAC World Congress, Prague, Czech Republic (2005) Google Scholar
  294. 294.
    Klán, P., Gorez, R.: PI controller design for actuator preservation. In: Proc. IFAC World Congress, Seoul, Korea, pp. 5820–5824 (2008) Google Scholar
  295. 295.
    Klein, M., Walter, H., Pandit, M.: Digitaler PI-regler: Neue Einstellregeln mit Hilfe der Streckensprungantwort [Digital PI-control: new tuning rules based on step response identification]. at-Automatisierungstechnik 40(8), 291–299 (1992) (in German) MATHGoogle Scholar
  296. 296.
    Koivo, H.N., Tanttu, J.T.: Tuning of PID controllers: survey of SISO and MIMO techniques. In: Proc. IFAC Intelligent Tuning Adaptive Control Symposium, Singapore, pp. 75–80 (1991) Google Scholar
  297. 297.
    Kookos, I.K., Lygeros, A.I., Arvanitis, K.G.: On-line PI controller tuning for integrator/dead time processes. Eur. J. Control 5, 19–31 (1999) MATHGoogle Scholar
  298. 298.
    Kosinsani, S.: Effect of disturbance dynamic characteristics on optimum PID controller tuning constants. Ph.D. thesis, Oklahoma State University, USA (1985) Google Scholar
  299. 299.
    Kotaki, M., Yamakawa, Y., Yamazaki, T., Kamimura, K., Kurosu, S.: A tuning method for PID controller that considers changes in system characteristics. ASHRAE Trans. 111(2), 13–22 (2005) Google Scholar
  300. 300.
    Kotaki, M., Yamkazi, T., Matuba, T., Kamimura, K., Kurosu, S.: A tuning method for PID controller under consideration of changes in plant characteristics. Trans. Soc. Instrum. Control Eng. 41(2), 177–179 (2005) Google Scholar
  301. 301.
    Kraus, T.W.: Pattern-recognizing self-tuning controller. US Patent Number 4,602,326 (1986) Google Scholar
  302. 302.
    Kristiansson, B.: PID controllers design and evaluation. PhD thesis, Chalmers University of Technology, Sweden (2003) Google Scholar
  303. 303.
    Kristiansson, B., Lennartson, B.: Robust design of PID controllers including auto-tuning rules. In: Proc. American Control Conference, vol. 5, pp. 3131–3132 (1998) Google Scholar
  304. 304.
    Kristiansson, B., Lennartson, B.: Optimal PID controllers for unstable and resonant plants. In: Proc. Conference on Decision and Control, Tampa, USA, pp. 4380–4381 (1998) Google Scholar
  305. 305.
    Kristiansson, B., Lennartson, B.: Near optimal tuning rules for PI and PID controllers. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 369–374 (2000) Google Scholar
  306. 306.
    Kristiansson, B., Lennartson, B.: Robust and optimal tuning of PI and PID controllers. IEE Proc., Control Theory Appl. 149, 17–25 (2002) CrossRefGoogle Scholar
  307. 307.
    Kristiansson, B., Lennartson, B.: Convenient almost optimal and robust tuning of PI and PID controllers. In: Proc. IFAC World Congress, Barcelona, Spain (2002) Google Scholar
  308. 308.
    Kristiansson, B., Lennartson, B.: Robust tuning of PI and PID controllers. IEEE Control Syst. Mag. 26(1), 55–69 (2006) MathSciNetCrossRefGoogle Scholar
  309. 309.
    Kristiansson, B., Lennartson, B.: Evaluation and tuning of robust PID controllers. In: Proc. Nordic Process Control Workshop, Trondheim, Norway (2003). Available at http://www.itk.ntnu.no/groups/npcw11/PapersDownload/Kristiansson&Lennartson.pdf. Cited 4 January 2011 Google Scholar
  310. 310.
    Kristiansson, B., Lennartson, B., Fransson, C.-M.: From PI to H control in a unified framework. In: Proc. 39th IEEE Conference on Decision and Control, Sydney, Australia, pp. 2740–2745 (2000) Google Scholar
  311. 311.
    Kuhn, U.: Ein praxisnahe Einstellregel für PID-regler: die T-summen-regel. Autom.tech. Prax. 37(5), 10–16 (1995) (in German) Google Scholar
  312. 312.
    Kukal, J.: O volbč parametrů PI a PID regulátorů. Automatizace 49(1), 16–20 (2006) (in Czech) MathSciNetGoogle Scholar
  313. 313.
    Kuwata, R.: An improved ultimate sensitivity method and PID; I-PD control characteristics. Trans. Soc. Instrum. Control Eng. 23(3), 232–239 (1987) Google Scholar
  314. 314.
    Kwak, H.J., Sung, S.W., Lee, I.-B.: Stabilizability conditions and controller design for unstable processes. Trans. Inst. Chem. Eng. 78(A), 549–556 (2000) CrossRefGoogle Scholar
  315. 315.
    Landau, I.D., Voda, A.: An analytical method for the auto-calibration of PID controllers. In: Proc. 31st Conference on Decision and Control, Tucson, USA, pp. 3237–3242 (1992) CrossRefGoogle Scholar
  316. 316.
    Larionescu, S.: Reglarea automată a instalaţiilor pe baza unui model intern (2002). Available at http://www.geocities.com/larionescu/Infos1.htm. Cited 27 May 2008 (in Romanian)
  317. 317.
    Latzel, W.: Einstellregeln für kontinuierliche und Abtast-Regler nach der Methode der Betragsanpassung (On the setting of continuous and sampled data controllers by the method of gain adjustment). Automatisierungstechnik 36, 170–178 (1988) (in German) MATHGoogle Scholar
  318. 318.
    Lavanya, K., Umamaheswari, B., Panda, R.C.: System identification and controller tuning rule for DC-DC converter using ripple voltage waveform. In: Proc. International Conference on Power Electronics, Drives and Energy Syst., New Delhi, India, pp. 1–4 (2006) CrossRefGoogle Scholar
  319. 319.
    Lavanya, K., Umamaheswari, B., Panda, R.C.: Identification of second order plus dead time systems using relay feedback test. Indian Chem. Eng. Sect. A 48(3), 94–102 (2006) Google Scholar
  320. 320.
    Lee, C.-H.: A survey of PID controller design based on gain and phase margins. Int. J. Comput. Cogn. 2(3), 63–100 (2004) Google Scholar
  321. 321.
    Lee, J., Edgar, T.F.: Improved PI controller with delayed or filtered integral mode. AIChE J. 48, 2844–2850 (2002) CrossRefGoogle Scholar
  322. 322.
    Lee, W.S., Shi, J.: Modified IMC-PID controllers and generalised PID controllers for first-order plus dead-time processes. In: Proc. Seventh International Conference on Control, Automation, Robotics and Vision, Singapore, pp. 898–903 (2002) Google Scholar
  323. 323.
    Lee, C.-H., Teng, C.-C.: Calculation of PID controller parameters by using a fuzzy neural network. ISA Trans. 42, 391–400 (2003) CrossRefGoogle Scholar
  324. 324.
    Lee, J., Choi, J.Y., Lee, S.D., Kwon, Y.S.: Improved method for a PID controller tuning by the dominant pole placement. J. Korean Inst. Chem. Eng. 30(5), 631–634 (1992) (in Korean) Google Scholar
  325. 325.
    Lee, Y., Park, S., Lee, M., Brosilow, C.: PID controller tuning to obtain desired closed-loop responses for SI/SO systems. AIChE J. 44, 106–115 (1998) CrossRefGoogle Scholar
  326. 326.
    Lee, Y., Lee, J., Park, S.: PID tuning for integrating and unstable processes with time delay. Chem. Eng. Sci. 55, 3481–3493 (2000) CrossRefGoogle Scholar
  327. 327.
    Lee, J., Park, H.C., Sung, S.W.: Analytical expression of ultimate gains and ultimate periods with phase-optimal approximations of time delays. Can. J. Chem. Eng. 83, 990–995 (2005) CrossRefGoogle Scholar
  328. 328.
    Lee, Y., Park, S., Lee, M.: Consider the generalized IMC-PID method for PID controller tuning of time-delay processes. Hydrocarb. Process. January, 87–91 (2006) Google Scholar
  329. 329.
    Lelic, M., Gajic, Z.: A reference guide to PID controllers in the nineties. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 73–82 (2000) Google Scholar
  330. 330.
    Lennartson, B., Kristiansson, B.: Pass band and high frequency robustness for PID control. In: Proc. 36th IEEE Conference on Decision and Control, San Diego, USA, pp. 2666–2671 (1997) CrossRefGoogle Scholar
  331. 331.
    Leonard, F.: Optimum PIDS controllers, an alternative for unstable delayed systems. In: Proc. IEEE Conference on Control Applications, Glasgow, UK, pp. 1207–1210 (1994) CrossRefGoogle Scholar
  332. 332.
    Leva, A.: PID autotuning algorithm based on relay feedback. IEE Proc. Part D. Control Theory Appl. 140, 328–338 (1993) MATHCrossRefGoogle Scholar
  333. 333.
    Leva, A.: Model-based tuning: the very basics and some useful techniques. J. A: Benelux Q. J. Autom. Control 42(3), 14–22 (2001) Google Scholar
  334. 334.
    Leva, A.: Model-based proportional-integral-derivative autotuning improved with relay feedback identification. IEE Proc., Control Theory Appl. 152, 247–256 (2005) CrossRefGoogle Scholar
  335. 335.
    Leva, A.: Model-based PI(D) tuning with ad-hoc regulator expressions. In: Proc. American Control Conference, New York, USA, pp. 5802–5807 (2007) CrossRefGoogle Scholar
  336. 336.
    Leva, A.: Autotuning of PI+p controllers. In: Proc. IEEE International Symposium on Computer-Aided Control Syst. Design, San Antonio, USA, pp. 1049–1054 (2008) Google Scholar
  337. 337.
    Leva, A., Colombo, A.M.: Estimating model mismatch overbounds for the robust autotuning of industrial regulators. Automatica 26, 1855–1861 (2000) Google Scholar
  338. 338.
    Leva, A., Colombo, A.M.: Implementation of a robust PID autotuner in a control design environment. Trans. Inst. Meas. Control 23, 1–20 (2001) Google Scholar
  339. 339.
    Leva, A., Colombo, A.M.: On the IMC-based synthesis of the feedback block of ISA-PID regulators. Trans. Inst. Meas. Control 26, 417–440 (2004) CrossRefGoogle Scholar
  340. 340.
    Leva, A., Maggio, M.: The PI+p controller structure and its tuning. J. Process Control 19, 1451–1457 (2009) CrossRefGoogle Scholar
  341. 341.
    Leva, A., Maffezzoni, C., Scattolini, R.: Self-tuning PI-PID regulators for stable systems with varying delay. Automatica 30, 1171–1183 (1994) MathSciNetMATHCrossRefGoogle Scholar
  342. 342.
    Leva, A., Bascetta, L., Schiavo, F.: Model-based proportional-integral/proportional-integral-derivative (PI/PID) autotuning with fast relay identification. Ind. Eng. Chem. Res. 45(12), 4052–4062 (2006) CrossRefGoogle Scholar
  343. 343.
    Leva, A., Cox, C., Ruano, A.: Hands-on PID autotuning: a guide to better utilisation (2006). Available at http://www.ifac-control.org/publications/list-of-professional-briefs/pb_final_levacoxruano.pdf/view. Cited 4 January 2011
  344. 344.
    Li, Z., Su, X., Lin, P.: A practical algorithm for PID auto-tuning. Adv. Model. Anal. C, Syst. Anal. Control Des. 40(2), 17–27 (1994) Google Scholar
  345. 345.
    Li, Y.-N., Zhang, W.-D., Liu, T.: New design method of PID controller for inverse response processes with time delay. J. Shanghai Chiao-Tung Univ. 38(4), 506–509 (2004) (in Chinese) MathSciNetGoogle Scholar
  346. 346.
    Li, Y., Ang, K.H., Chong, G.C.Y.: PID control system analysis and design. IEEE Control Syst. Mag. 26(1), 32–41 (2006) CrossRefGoogle Scholar
  347. 347.
    Li, Y., Ang, K.H., Chong, G.C.Y.: Patents, software and hardware for PID control: an overview and analysis of the current art. IEEE Control Syst. Mag. 26(1), 42–54 (2006) CrossRefGoogle Scholar
  348. 348.
    Lim, C.M., Tan, W.C., Lee, T.S.: Tuning of PID controllers for first and second-order lag processes with dead time. Int. J. Electr. Eng. Educ. 22, 345–353 (1985) Google Scholar
  349. 349.
    Lipták, B. (ed.): Instrument Engineers Handbook Volume II: Process Control. Chilton, Philadelphia (1970) Google Scholar
  350. 350.
    Lipták, B.: Controller tuning II: Problems and methods (2001). Available at http://www.controlmagazine.com. Cited 21 November 2003
  351. 351.
    Lipták, B.: Post-il Energy Technology: The World’s First Solar-Hydrogen Demonstration Power Plant, p. 193. CRC Press, Boca Raton (2009) Google Scholar
  352. 352.
    Litrico, X., Fromion, V.: Tuning of robust distant downstream PI controllers for an irrigation canal pool. I: Theory. J. Irrig. Drain. Eng. 132(4), 359–368 (2006) CrossRefGoogle Scholar
  353. 353.
    Litrico, X., Fromion, V., Baume, J.-P.: Tuning of robust distant downstream PI controllers for an irrigation canal pool. II: Implementation issues. J. Irrig. Drain. Eng. 132(4), 369–379 (2006) CrossRefGoogle Scholar
  354. 354.
    Litrico, X., Malaterre, P.-O., Baume, J.-P., Vion, P.-Y., Ribot-Bruno, J.: Automatic tuning of PI controllers for an irrigation canal pool. J. Irrig. Drain. Eng. 133(1), 27–37 (2007) CrossRefGoogle Scholar
  355. 355.
    Liu, T., Gu, D., Zhang, W.: A H infinity design method of PID controller for second-order processes with integrator and time delay. In: Proc. 42nd IEEE Conference on Decision and Control, Maui, USA, pp. 6044–6049 (2003) Google Scholar
  356. 356.
    Lloyd, S.G.: Tuning arrangements for turning the control parameters of a controller. U.S. Patent Number 5,283,729 (1994) Google Scholar
  357. 357.
    Lopez, A.M.: Optimisation of system response. Ph.D. dissertation, Louisiana State University, USA (1968) Google Scholar
  358. 358.
    Lopez, A.M., Smith, C.L., Murrill, P.W.: An advanced tuning method. Br. Chem. Eng. 14, 1553–1555 (1969) Google Scholar
  359. 359.
    Loron, L.: Tuning of PID controllers by the non-symmetrical optimum method. Automatica 33, 103–107 (1997) MATHCrossRefGoogle Scholar
  360. 360.
    Luo, K.-N., Kuo, C.-Y., Sheu, L.-T.: A novel method for fuzzy self-tuning PID controllers. In: Proc. Asian Fuzzy Syst. Symposium, pp. 194–199 (1996) Google Scholar
  361. 361.
    Luyben, W.L.: Dynamics and control of recycle systems. 1. Simple open loop and closed loop systems. Ind. Eng. Chem. Res. 32, 466–475 (1993) CrossRefGoogle Scholar
  362. 362.
    Luyben, W.L.: Tuning proportional-integral-derivative controllers for integrator/deadtime processes. Ind. Eng. Chem. Res. 35, 3480–3483 (1996) CrossRefGoogle Scholar
  363. 363.
    Luyben, W.L.: Tuning temperature controllers on openloop unstable reactors. Ind. Eng. Chem. Res. 37, 4322–4331 (1998) CrossRefGoogle Scholar
  364. 364.
    Luyben, W.L.: Tuning proportional-integral controllers for processes with both inverse response and deadtime. Ind. Eng. Chem. Res. 39, 973–976 (2000) CrossRefGoogle Scholar
  365. 365.
    Luyben, W.L.: Effect of derivative algorithm and tuning selection on the PID control of dead-time processes. Ind. Eng. Chem. Res. 40, 3605–3611 (2001) CrossRefGoogle Scholar
  366. 366.
    Luyben, W.L., Luyben, M.L.: Essentials of Process Control. McGraw-Hill, Singapore (1997) Google Scholar
  367. 367.
    MacLellan, G.D.S.: Communications on “The practical application of frequency response analysis to automatic process control”. In: Proc. Institution of Mechanical Engineers (London), vol. 162, pp. 347–348 (1950) Google Scholar
  368. 368.
    Madhuranthakam, C.R., Elkamel, A., Budman, H.: Optimal tuning of PID controllers for FOPDT, SOPDT and SOPDT with lead processes. Chem. Eng. Process. 47, 251–264 (2008) CrossRefGoogle Scholar
  369. 369.
    Maffezzoni, C., Rocco, P.: Robust tuning of PID regulators based on step-response identification. Eur. J. Control 3, 125–136 (1997) MATHGoogle Scholar
  370. 370.
    Majhi, S.: Relay feedback process identification and controller design. Ph.D. thesis, University of Sussex, UK (1999) Google Scholar
  371. 371.
    Majhi, S.: On-line PI control of stable processes. J. Process Control 15, 859–867 (2005) CrossRefGoogle Scholar
  372. 372.
    Majhi, S., Atherton, D.P.: Autotuning and controller design for processes with small time delays. IEE Proc., Control Theory Appl. 146(5), 415–425 (1999) CrossRefGoogle Scholar
  373. 373.
    Majhi, S., Atherton, D.P.: Online tuning of controllers for an unstable FOPDT process. IEE Proc., Control Theory Appl. 147, 421–427 (2000) CrossRefGoogle Scholar
  374. 374.
    Majhi, S., Litz, L.: On-line tuning of PID controllers. In: Proc. American Control Conference, Denver, USA, pp. 5003–5004 (2003) CrossRefGoogle Scholar
  375. 375.
    Majhi, S., Mahanta, C.: Tuning of controllers for integrating time delay processes. In: Proc. IEEE Region 10 Int. Conference on Electrical and Electronic Technol., vol. 1, pp. 317–320 (2001) Google Scholar
  376. 376.
    Malwatkar, G.M., Sonawane, S.H., Waghmare, L.M.: Tuning PID controllers for higher-order oscillatory systems with improved performance. ISA Trans. 48, 347–353 (2009) CrossRefGoogle Scholar
  377. 377.
    Mann, G.K.I., Hu, B.-G., Gosine, R.G.: Time-domain based design and analysis of new PID tuning rules. IEE Proc., Control Theory Appl. 148, 251–261 (2001) CrossRefGoogle Scholar
  378. 378.
    Mantz, R.J., Tacconi, E.J.: Complementary rules to Ziegler and Nichols’ rules for a regulating and tracking controller. Int. J. Control 49, 1465–1471 (1989) MATHGoogle Scholar
  379. 379.
    Manum, H.: Extensions of Skogestad’s SIMC tuning rules to oscillatory and unstable processes (2005). Available at http://www.nt.ntnu.no/users/skoge/diplom/prosjekt05/manum/rapport.pdf. Cited 4 January 2011
  380. 380.
    Marchetti, G., Scali, C.: Use of modified relay techniques for the design of model-based controllers for chemical processes. Ind. Eng. Chem. Res. 39, 3325–3334 (2000) CrossRefGoogle Scholar
  381. 381.
    Marchetti, G., Scali, C., Lewin, D.R.: Identification and control of open-loop unstable processes by relay methods. Automatica 37, 2049–2055 (2001) MATHCrossRefGoogle Scholar
  382. 382.
    Marlin, T.E.: Process Control. McGraw-Hill, New York (1995) Google Scholar
  383. 383.
    Maroto, R.: Ecuaciones para la sintonización de controladores PID con acción derivative aplicada a la señal realimentada. Proyecto Eléctrico, Universidad de Costa Rica (2007). Available at http://eie.ucr.ac.cr/uploads/file/proybach/pb0714t.pdf. Cited 4 January 2011 (in Spanish)
  384. 384.
    Mataušek, M.R., Kvaščev, G.S.: A unified step response procedure for autotuning of PI controller and Smith predictor for stable processes. J. Process Control 13, 787–800 (2003) CrossRefGoogle Scholar
  385. 385.
    Mataušek, M.R., Ribić, A.I.: Design and robust tuning of control scheme based on the PD controller plus Disturbance Observer and low-order integrating first-order plus dead-time model. ISA Trans. 48(4), 410–416 (2009) CrossRefGoogle Scholar
  386. 386.
    Matsuba, T., Kasahara, M., Murasawa, I., Hashimoto, Y., Kamimura, K., Kimbara, A., Kurosu, S.: Stability limit of room air temperature of a VAV system. ASHRAE Trans. 104(2), 257–265 (1998) Google Scholar
  387. 387.
    Mazzini, H.M., Taroco, C.G., Ribeiro, L.: Design of two-degree-of-freedom control scheme for unstable SOPTD systems. In: Proc. Conferência Internacional de Aplicações Industriais, Poços de Caldas, Brazil, pp. 1–6 (2008) Google Scholar
  388. 388.
    McAnany, D.E.: A pole placement technique for optimum PID control parameters. In: Proc. ISA Advances in Instrumentation and Control Conference, Chicago, USA, vol. 48, pp. 1775–1782 (1993) Google Scholar
  389. 389.
    McAvoy, T.J., Johnson, E.F.: Quality of control problem for dead-time plants. Ind. Eng. Chem. Process Des. Dev. 6, 440–446 (1967) CrossRefGoogle Scholar
  390. 390.
    McMillan, G.K.: Control loop performance. In: Proc. ISA International Conference and Exhibition, Houston, USA, vol. 39, pp. 589–603 (1984) Google Scholar
  391. 391.
    McMillan, G.K.: Tuning and Control Loop Performance—A Practitioner’s Guide, 3rd edn. Instrument Society of America, North Carolina, USA (1994) Google Scholar
  392. 392.
    McMillan, G.K.: Good Tuning: A Pocket Guide, 2nd edn. Instrument Society of America, North Carolina, USA (2005) Google Scholar
  393. 393.
    McMillan, G.: Tips-N-Techniques (TNT)—Tuning furnace and incinerator pressure loops (2008). Available at http://www.modelingandcontrol.com/2008/08/tipsntechniques_tnt_tuning_fur_1.html. Cited 4 January 2011
  394. 394.
    Méndez, V.: Ecuaciones para la sintonización de controladores PID utilizando funciones de costo del tipo IT m E n. Proyecto Eléctrico, Universidad de Costa Rica (2006). Available at http://www.eie.ucr.ac.cr/uploads/file/proybach/pb0631t.pdf. Cited 4 January 2011 (in Spanish)
  395. 395.
    Mesa, F., Lozano, J.L., Marin, L.: On the consideration of FOPDT and SOPDT responses as bounds of PI tuning. In: Proc. IEEE Mediterranean Electrotechnical Conference, Málaga, Spain, pp. 421–424 (2006) CrossRefGoogle Scholar
  396. 396.
    Mitchell, R.J.: ‘Flat phase’ PID controllers. In: Proc. UK Automatic Control Conference, Manchester, UK (2008) Google Scholar
  397. 397.
    Mizutani, M., Hiroi, K.: New two degrees of freedom PID algorithm with 1st lag mean (super 2dof PID algorithm). In: Proc. ISA Advances in Instrumentation and Control, Anaheim, USA, vol. 46, Part 2, pp. 1125–1132 (1991) Google Scholar
  398. 398.
    Mnif, F.: New tuning rules of PI-like controllers with transient performances for monotonic time-delay systems. ISA Trans. 47, 401–406 (2008) CrossRefGoogle Scholar
  399. 399.
    Mollenkamp, R.A., Smith, C.L., Corripio, A.B.: Using models to tune industrial controllers. Instrum. Control Syst. September, 46–47 (1973) Google Scholar
  400. 400.
    Montenegro, A.: Sintonización de controladores PID de dos grados de libertad para lograr un desempeño optimo balanceado. Proyecto Eléctrico, Universidad de Costa Rica, Facultad de Ingeniería (2007). Available at http://www.eie.ucr.ac.cr/uploads/file/proybach/pb07_II/pb0725t.pdf. Cited 4 January 2011 (in Spanish)
  401. 401.
    Morari, M., Zafiriou, E.: Robust Process Control. Prentice-Hall, Englewood Cliffs (1989) Google Scholar
  402. 402.
    Morilla, F., González, A., Duro, N.: Auto-tuning PID controllers in terms of relative damping. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 161–166 (2000) Google Scholar
  403. 403.
    Moros, R.: Strecke mit Ausgleich höherer Ordnung (1999). Available at http://techni.tachemie.uni-leipzig.de/reg/regeintn.html. Cited 4 January 2011 (in German)
  404. 404.
    Murata, H., Sagara, S.: The noninteger order lag element plus dead time approximation of the process dynamics and its application to the optimal setting of the PI controller. Syst. Control 21(9), 517–524 (1977) (in Japanese) Google Scholar
  405. 405.
    Murrill, P.W.: Automatic Control of Processes. International Textbook Co., Pennsylvania, USA (1967) Google Scholar
  406. 406.
    Naşcu, I., De Keyser, R., Folea, S., Buzdugan, T.: Development and evaluation of a PID auto-tuning controller. In: Proc. IEEE-TTTC International Conference on Automation, Quality, Testing and Robotics, Cluj-Napora, Romania, pp. 122–127 (2006) CrossRefGoogle Scholar
  407. 407.
    Nemati, H., Bagheri, P.: A new approach to tune the two-degree-of-freedom (2DOF). In: Proc. IEEE International Symposium on Computer-Aided Control System Design, Yokohama, Japan, pp. 1819–1824 (2010) CrossRefGoogle Scholar
  408. 408.
    NI Labview: PID control toolkit user manual (2001). Available at http://www.ni.com/pdf/manuals/322192a.pdf. Cited 4 January 2011
  409. 409.
    Nomura, M., Saito, T., Kitamori, T.: A simple tuning method based on partial model matching for PID controller. Trans. Inst. Electr. Eng. Jpn. 113-C(1), 59–68 (1993) (in Japanese) Google Scholar
  410. 410.
    Normey-Rico, J.E., Alcalá, I., Gómez-Ortega, J., Camacho, E.F.: Robust PID tuning application to a mobile robot path tracking problem. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 648–653 (2000) Google Scholar
  411. 411.
    Normey-Rico, J.E., Alcalá, I., Gómez-Ortega, J., Camacho, E.F.: Mobile robot path tracking using a robust PID controller. Control Eng. Pract. 9, 1209–1214 (2001) CrossRefGoogle Scholar
  412. 412.
    Normey-Rico, J.E., Camacho, E.F.: Control of Dead-Time Processes, pp. 93–95. Springer, London (2007) Google Scholar
  413. 413.
    O’Connor, G.E., Denn, M.M.: Three mode control as an optimal control. Chem. Eng. Sci. 27, 121–127 (1972) CrossRefGoogle Scholar
  414. 414.
    O’Dwyer, A.: PID compensation of time delayed processes: a survey. In: Proc. Irish Signals and Syst. Conference, Dublin, Ireland, pp. 5–12 (2000) Google Scholar
  415. 415.
    O’Dwyer, A.: PI and PID controller tuning rule design for processes with delay, to achieve constant gain and phase margins for all values of delay. In: Proc. Irish Signals and Syst. Conference, N.U.I., Maynooth, Ireland, pp. 96–100 (2001) Google Scholar
  416. 416.
    O’Dwyer, A.: Series PID controller tuning rules. Technical Report AOD-01-13, Dublin Institute of Technology, Ireland (2001) Google Scholar
  417. 417.
    O’Dwyer, A.: PID compensation of time delayed processes 1998–2002: a survey. In: Proc. American Control Conference, Denver, USA, pp. 1494–1499 (2003) CrossRefGoogle Scholar
  418. 418.
    O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 1st edn. Imperial College Press, London (2003) Google Scholar
  419. 419.
    O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 2nd edn. Imperial College Press, London (2006) CrossRefGoogle Scholar
  420. 420.
    O’Dwyer, A.: Handbook of PI and PID Controller Tuning Rules, 3rd edn. Imperial College Press, London (2009) CrossRefGoogle Scholar
  421. 421.
    Ogawa, S.: PI controller tuning for robust performance. In: Proc. 4th IEEE Conference on Control Applications, pp. 101–106 (1995) Google Scholar
  422. 422.
    Ogawa, M., Katayama, T.: A robust tuning method for I-PD controller incorporating a constraint on manipulated variable. Trans. Soc. Instrum. Control Eng. E-1(1), 265–273 (2001) Google Scholar
  423. 423.
    Okada, Y., Yamakawa, Y., Yamazaki, T., Kurosu, S.: Tuning method of PI controller for given damping coefficient. In: Proc. SICE-ICASE International Joint Conference, Busan, Korea, pp. 5204–5207 (2006) CrossRefGoogle Scholar
  424. 424.
    Okada, Y., Yamakawa, Y., Yamazaki, T., Kurosu, S.: Tuning method of PID controller for desired damping coefficient. In: Proc. SICE Annual Conference, Takamatsu, Japan, pp. 795–799 (2007) CrossRefGoogle Scholar
  425. 425.
    OMEGA Books: Introduction to temperature controllers (2005). Available at http://www.gii.upv.es/personal/gbenet/IIN/tema_transductores/OmegaBooks/tech_ref_temp.pdf, Z111–Z117. Cited 4 January 2011
  426. 426.
    Oppelt, W.: Einige Faustformeln zur Einstellung von Regelvorgängen. Chem. Ing. Tech. 23(8), 190–193 (1951) (in German) CrossRefGoogle Scholar
  427. 427.
    Ou, W.-H., Chen, Y.-W.: Adaptive actual PID control with an adjustable identification interval. Chem. Eng. Commun. 134, 93–105 (1995) CrossRefGoogle Scholar
  428. 428.
    Ou, L., Gu, D., Zhang, W., Cai, Y.: H PID controller stabilization for stable processes with time delay. In: Proc. IEEE International Conference on Industrial Technol, Hong Kong, China, pp. 655–659 (2005) Google Scholar
  429. 429.
    Ou, L., Tang, Y., Gu, D., Zhang, W.: Stability analysis of PID controllers for integral processes with time delay. In: Proc. American Control Conference, Portland, USA, pp. 4247–4252 (2005) Google Scholar
  430. 430.
    Ou, L., Zhang, W., Gu, D.: Stabilization of LTI time-delayed processes using analytical PID controllers. In: Proc. IFAC World Congress, Prague, Czech Republic (2005) Google Scholar
  431. 431.
    Oubrahim, R., Leonard, F.: PID tuning by a composed structure. In: Proc. UKACC International Conference on Control, Swansea, UK, vol. 2, pp. 1333–1338 (1998) CrossRefGoogle Scholar
  432. 432.
    Ozawa, K., Noda, Y., Yamazaki, T., Kamimura, K., Kurosu, S.: A tuning method for PID controller using optimisation subject to constraints on control input. ASHRAE Trans. 109, 79–88 (2003) Google Scholar
  433. 433.
    Padhy, P.K., Majhi, S.: Relay based PI-PD design for stable and unstable FOPDT processes. Comput. Chem. Eng. 30(5), 790–796 (2006) CrossRefGoogle Scholar
  434. 434.
    Padhy, P.K., Majhi, S.: An exact method for on-line identification of FOPDT processes. In: Proc. IEEE International Conference on Industrial Technol., Mumbai, India, pp. 1528–1532 (2006) CrossRefGoogle Scholar
  435. 435.
    Pagola, F.L., Pecharromán, R.R.: PID auto-tuning based on a second point of frequency response. In: Proc. IFAC World Congress, Barcelona, Spain (2002). Available at http://www.iit.upcomillas.es/docs/02FLPH01.pdf. Cited 4 January 2011 Google Scholar
  436. 436.
    Pai, N.-S., Chang, S.-C., Huang, C.-T.: Tuning PI/PID controllers for integrating processes with deadtime and inverse response by simple calculations. J. Process Control 20, 726–733 (2010) CrossRefGoogle Scholar
  437. 437.
    Panda, R.C.: Synthesis of PID tuning rule using the desired closed-loop response. Ind. Eng. Chem. Res. 47(22), 8684–8692 (2008) MathSciNetCrossRefGoogle Scholar
  438. 438.
    Panda, R.C.: Synthesis of PID controller for unstable and integrating processes. Chem. Eng. Sci. 64, 2807–2816 (2009) CrossRefGoogle Scholar
  439. 439.
    Panda, R.C., Yu, C.-C., Huang, H.-P.: PID tuning rules for SOPDT systems: review and some new results. ISA Trans. 43, 283–295 (2004) CrossRefGoogle Scholar
  440. 440.
    Panda, R.C., Hung, S.-B., Yu, C.-C.: An integrated modified smith predictor with PID controller for integrator plus deadtime processes. Ind. Eng. Chem. Res. 45, 1397–1407 (2006) CrossRefGoogle Scholar
  441. 441.
    Paraskevopoulos, P.N., Pasgianos, G.D., Arvanitis, K.G.: New tuning and identification methods for unstable first order plus dead-time processes based on pseudoderivative feedback control. IEEE Trans. Control Syst. Technol. 12, 455–464 (2004) CrossRefGoogle Scholar
  442. 442.
    Paraskevopoulos, P.N., Pasgianos, G.D., Arvanitis, K.G.: PID-type controller tuning for unstable first order plus dead time processes based on gain and phase margin specifications. IEEE Trans. Control Syst. Technol. 14(5), 926–936 (2006) CrossRefGoogle Scholar
  443. 443.
    Park, H.I., Sung, S.W., Lee, I.-B., Lee, J.: A simple autotuning method using proportional controller. Chem. Eng. Commun. 161, 163–184 (1997) CrossRefGoogle Scholar
  444. 444.
    Park, J.H., Sung, S.W., Lee, I.-B.: An enhanced PID control strategy for unstable processes. Automatica 34, 751–756 (1998) MATHCrossRefGoogle Scholar
  445. 445.
    Parr, E.A.: Industrial Control Handbook, vol. 3. BSP Professional Books, Oxford (1989) Google Scholar
  446. 446.
    Paz Ramos, M.A., Morales, L.E.M., Juan, L.B.M., Bazán, G.R.: Genetic rules to tune proportional + derivative controllers for integrative processes with time delays. In: Proc. 15th International Conference on Electronics, Communications and Computers, Puebla, Mexico (2005) Google Scholar
  447. 447.
    Pecharromán, R.: Private communication, 9 May 2000 Google Scholar
  448. 448.
    Pecharromán, R.: Ajuste automático de reguladores industriales. Algoritmo robustos de identificación y síntesis. Ph.D. thesis, Universidad Pontificia Comillas, Madrid, Spain (2000) (in Spanish) Google Scholar
  449. 449.
    Pecharromán, R.R., Pagola, F.L.: Control design for PID controllers auto-tuning based on improved identification. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 89–94 (2000) Google Scholar
  450. 450.
    Pemberton, T.J.: PID: the logical control algorithm. Control Eng. 19(5), 66–67 (1972) Google Scholar
  451. 451.
    Pemberton, T.J.: PID: the logical control algorithm II. Control Eng. 19(7), 61–63 (1972) Google Scholar
  452. 452.
    Peng, H., Wu, S.-C.: Identification and control of typical industrial process. J. Cent. South Univ. Technol. 7, 165–169 (2000) CrossRefGoogle Scholar
  453. 453.
    Penner, A.: Tuning rules for a PI controller. In: Proc. ISA International Conference and Exhibition, Houston, USA, vol. 43, Part 3, pp. 1037–1051 (1988) Google Scholar
  454. 454.
    Perić, N., Petrović, I., Branica, I.: A method of PID controller autotuning. In: Proc. IFAC Conference on Control of Industrial Syst, Belfort, France, pp. 597–602 (1997) Google Scholar
  455. 455.
    Pessen, D.W.: Optimum three-mode controller settings for automatic start-up. Trans. ASME 75, 843–849 (1953) Google Scholar
  456. 456.
    Pessen, D.W.: How to “tune in” a three-mode controller. Instrumentation 7(3), 29–32 (1954) Google Scholar
  457. 457.
    Pessen, D.W.: A new look at PID-controller tuning. J. Dyn. Syst. Meas. Control 116(3), 553–557 (1994) CrossRefGoogle Scholar
  458. 458.
    Petterson, T.S.: Tuning and control strategy for an offshore process subject to minimum environmental impact (2007). Available at http://www.nt.ntnu.no/users/skoge/diplom/prosjekt07/pettersen/Rapport.pdf. Cited 4 January 2011
  459. 459.
    Pettit, J.W., Carr, D.M.: Self-tuning controller. US Patent No. 4,669,040 (1987) Google Scholar
  460. 460.
    Pinnella, M.J., Wechselberger, E., Hittle, D.C., Pedersen, C.O.: Self-tuning digital integral control. ASHRAE Trans. 92(2B), 202–209 (1986) Google Scholar
  461. 461.
    PMA (Prozeß-und Maschinen-Automation) GmbH: Industrieregler KS40-1, KS41-1, KS42-1 Manuelle Optimierung, p. 18 (2006). Available at http://www.pma-online.de/de/pdf/ba_ks40-1_41-1_42-1_d_9499-040-62718.pdf. Cited 4 January 2011 (in German)
  462. 462.
    Pohjola, M.: PID controller design in networked control systems. M.Sc Thesis, Department of Automation and Systems Technology, Helsinki University of Technology, Finland (2006) Google Scholar
  463. 463.
    Pohjola, M.: Adaptive jitter margin PID controller. In: Proc. 4th IEEE Conference on Automation Science and Engineering, Washington DC, USA, pp. 534–539 (2008) Google Scholar
  464. 464.
    Polonyi, M.J.G.: PID controller tuning using standard form optimization. Control Eng. March, 102–106 (1989) Google Scholar
  465. 465.
    Pomerleau, A., Poulin, É.: Manipulated variable based PI tuning and detection of poor settings: an industrial experience. ISA Trans. 43, 445–457 (2004) CrossRefGoogle Scholar
  466. 466.
    Potočnik, B., Škrjanc, I., Matko, D., Zupančič, B.: Samonastavljivi PI regulator na podlagi metode z relejskim preskusom. Elektroteh. Vestn. 68, 115–122 (2001) (in Slovenian) Google Scholar
  467. 467.
    Poulin, E., Pomerleau, A.: PID tuning for integrating and unstable processes. IEE Proc., Control Theory Appl. 143, 429–435 (1996) MATHCrossRefGoogle Scholar
  468. 468.
    Poulin, E., Pomerleau, A.: Unified PID design method based on a maximum peak resonance specification. IEE Proc., Control Theory Appl. 144, 566–574 (1997) MATHCrossRefGoogle Scholar
  469. 469.
    Poulin, E., Pomerleau, A.: PI settings for integrating processes based on ultimate cycle information. IEEE Trans. Control Syst. Technol. 7, 509–511 (1999) CrossRefGoogle Scholar
  470. 470.
    Poulin, E., Pomerleau, A., Desbiens, A., Hodouin, D.: Development and evaluation of an auto-tuning and adaptive PID controller. Automatica 32, 71–82 (1996) MathSciNetMATHCrossRefGoogle Scholar
  471. 471.
    Pramod, S., Chidambaram, M.: Closed loop identification of transfer function model for unstable bioreactors for tuning PID controllers. Bioprocess Biosyst. Eng. 22, 185–188 (2000) Google Scholar
  472. 472.
    Prashanti, G., Chidambaram, M.: Set-point weighted PID controllers for unstable systems. J. Franklin Inst. 337, 201–215 (2000) MATHCrossRefGoogle Scholar
  473. 473.
    Prokop, R., Korbel, J.: Relé ve zpětné vazbě aneb převrat v návrhu regulátorů. Automatizace 48(3), 190–195 (2006) (in Czech) Google Scholar
  474. 474.
    Prokop, R., Husták, P., Prokopová, Z.: Robust PID-like controllers—design and tuning. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 320–325 (2000) Google Scholar
  475. 475.
    Prokop, R., Korbel, J., Matušů, R.: PI autotuners based on biased relay identification. In: Proc. IFAC World Congress, Prague, Czech Republic (2005) Google Scholar
  476. 476.
    Pulkkinen, J., Koivo, H.N., Mäkelä, K.: Tuning of a robust PID controller—application to heating process in extruder. In: Proc. 2nd IEEE Conference on Control Applications, Vancouver, Canada, pp. 811–816 (1993) CrossRefGoogle Scholar
  477. 477.
    Ramasamy, M., Sundaramoorthy, S.: PID controller tuning for desired closed loop responses for SISO systems using impulse response. Comput. Chem. Eng. 32, 1773–1788 (2008) CrossRefGoogle Scholar
  478. 478.
    Rao, A.S., Chidambaram, M.: Control of unstable processes with two RHP poles, a zero and time delay. Asia-Pac. J. Chem. Eng. 1, 63–69 (2006) CrossRefGoogle Scholar
  479. 479.
    Rao, A.S., Chidambaram, M.: Enhanced two-degrees-of-freedom control strategy for second-order unstable processes with time delay. Ind. Eng. Chem. Res. 45, 3604–3614 (2006) CrossRefGoogle Scholar
  480. 480.
    Rao, A.S., Rao, V.S.R., Chidambaram, M.: Direct synthesis-based controller design for integrating processes with time delay. J. Franklin Inst. 346, 38–56 (2009) MathSciNetCrossRefGoogle Scholar
  481. 481.
    Ream, N.: The calculation of process control settings from frequency characteristics. Trans. Soc. Instrum. Technol. 6(1), 19–28 (1954) Google Scholar
  482. 482.
    Reswick, J.B.: Disturbance-response feedback – a new control concept. Trans. ASME 78, 153–162 (1956) Google Scholar
  483. 483.
    Rhinehart, R.R.: The century’s greatest contributions to control practice. ISA Trans. 39, 3–13 (2000) CrossRefGoogle Scholar
  484. 484.
    Rice, R.C.: A rule based design methodology for the control of non-self regulating processes. Ph.D. thesis, University of Connecticut, USA (2004) Google Scholar
  485. 485.
    Rice, R., Cooper, D.J.: Design and tuning of PID controllers for integrating (non-self-regulating) processes. In: Proc. ISA Annual Meeting, Chicago, USA, vol. 424 (2002). Paper P057 Google Scholar
  486. 486.
    Rice, B., Cooper, D.: Recognizing integrating (non-self regulating) process behavior (2006). Available at http://www.controlguru.com/wp/p79.html. Cited 4 January 2011
  487. 487.
    Rice, R., Cooper, D.J.: Improve control of liquid level loops. Chemical Eng. Prog. June, 54–61 (2008) Google Scholar
  488. 488.
    Rivera, D.E., Jun, K.S.: An integrated identification and control design methodology for multivariable process system applications. IEEE Control Syst. Mag. 20(3), 25–37 (2000) CrossRefGoogle Scholar
  489. 489.
    Rivera, D.E., Morari, M., Skogestad, S.: Internal model control. 4. PID controller design. Ind. Eng. Chem. Process Des. Dev. 25, 252–265 (1986) CrossRefGoogle Scholar
  490. 490.
    Robbins, L.A.: Tune control loops for minimum variability. Chemical Eng. Prog. January, 68–70 (2002) Google Scholar
  491. 491.
    Rotach, Y.Va.: Calculation of the robust settings of automatic controllers. Therm. Eng. 41, 764–769 (1994) Google Scholar
  492. 492.
    Rotach, Y.Va.: Automatic tuning of PID-controllers—expert and formal methods. Therm. Eng. 42, 794–800 (1995) Google Scholar
  493. 493.
    Rotstein, G.E., Lewin, D.E.: Simple PI and PID tuning for open-loop unstable systems. Ind. Eng. Chem. Res. 30, 1864–1869 (1991) CrossRefGoogle Scholar
  494. 494.
    Rovira, A.A., Murrill, P.W., Smith, C.L.: Tuning controllers for setpoint changes. Instrum. Control Syst. 42, 67–69 (1969) Google Scholar
  495. 495.
    Rutherford, C.I.: The practical application of frequency response analysis to automatic process control. Proc. Inst. Mech. Eng. 162, 334–354 (1950) CrossRefGoogle Scholar
  496. 496.
    Sadeghi, J., Tych, W.: Deriving new robust adjustment parameters for PID controllers using scale-down and scale-up techniques with a new optimization method. In: Proc. ICSE: 16th Conference on Syst. Engineering, Coventry, UK, pp. 608–613 (2003) Google Scholar
  497. 497.
    Sain, S.G., Özgen, C.: Identification and tuning of processes with large deadtime. Control Comput. 20(3), 73–78 (1992) Google Scholar
  498. 498.
    Saito, T., Kawakami, J., Takahashi, S., Suehiro, T., Matsumoto, H., Tachibana, K.: PID controller system. US Patent No. 4,903,192 (1990) Google Scholar
  499. 499.
    Sakai, Y., Nakai, Y., Miyabe, A., Kawano, T.: Self-tuning controller, US Patent 4,881,160 (1989) Google Scholar
  500. 500.
    Schaedel, H.M.: A new method of direct PID controller design based on the principle of cascaded damping ratios. In: Proc. European Control Conference, Brussels, Belgium (1997). Paper WE-A H4 Google Scholar
  501. 501.
    Schlegel, M.: Nová metoda pro návrh PI(D) regulátoru—teorie pro praxi (new method for the design of a PI(D) controller—theory for practice). Automatizace 41(2), 70–78 (1998) (in Czech) Google Scholar
  502. 502.
    Schneider, D.M.: Control of processes with time delays. IEEE Trans. Ind. Appl. 24, 186–191 (1988) CrossRefGoogle Scholar
  503. 503.
    Seborg, D.E., Edgar, T.F., Shah, S.L.: Adaptive control strategies for process control: a survey. AIChE J. 32, 881–913 (1986) CrossRefGoogle Scholar
  504. 504.
    Seborg, D.E., Edgar, T.F., Mellichamp, D.A.: Process Dynamics and Control. Wiley, New York (1989) Google Scholar
  505. 505.
    Seki, H., Ogawa, M., Ohshima, M.: Retuning PID temperature controller for an unstable gas-phase polyolefin reactor. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 473–478 (2000) Google Scholar
  506. 506.
    Setiawan, A., Albright, L.D., Phelan, R.M.: Application of pseudo-derivative-feedback algorithm in greenhouse air temperature control. Comput. Electron. Agric. 26, 283–302 (2000) CrossRefGoogle Scholar
  507. 507.
    Shamsuzzoha, M., Lee, M.: IMC based control system design of PID cascaded filter. In: Proc. SICE-ICASE International Joint Conference, Busan, Korea, pp. 2485–2490 (2006) CrossRefGoogle Scholar
  508. 508.
    Shamsuzzoha, M., Lee, M.: Design of robust PID controllers for unstable processes. In: Proc. SICE-ICASE International Joint Conference, Busan, Korea, pp. 3324–3329 (2006) CrossRefGoogle Scholar
  509. 509.
    Shamsuzzoha, M., Lee, M.: Design of robust PID controller for the unstable dead time dominant processes. Theories Appl. Chem. Eng. 12(2), 1478–1481 (2006) Google Scholar
  510. 510.
    Shamsuzzoha, M., Lee, M.: Tuning of integrating and integrating processes with dead time and inverse response. Theories Appl. Chem. Eng. 12(2), 1482–1485 (2006) Google Scholar
  511. 511.
    Shamsuzzoha, M., Lee, M.: PID controller design strategy for first order time delay processes. Theories Appl. Chem. Eng. 13(1), 121–124 (2007) Google Scholar
  512. 512.
    Shamsuzzoha, M., Lee, M.: Enhanced performance for two-degree-of-freedom control scheme for second order unstable processes with time delay. In: Proc. International Conference on Control, Automation and Syst., Seoul, Korea, pp. 240–245 (2007) CrossRefGoogle Scholar
  513. 513.
    Shamsuzzoha, M., Lee, M.: IMC-PID controller design for improved disturbance rejection of time delayed processes. Ind. Eng. Chem. Res. 46, 2077–2081 (2007) CrossRefGoogle Scholar
  514. 514.
    Shamsuzzoha, M., Lee, M.: An enhanced performance PID filter controller for first order time delay processes. J. Chem. Eng. Jpn. 40(6), 501–510 (2007) CrossRefGoogle Scholar
  515. 515.
    Shamsuzzoha, M., Lee, M.: PID controller design for integrating processes with time delay. Korean J. Chem. Eng. 25(4), 637–645 (2008) CrossRefGoogle Scholar
  516. 516.
    Shamsuzzoha, M., Lee, M.: Design of advanced PID controller for enhanced disturbance rejection of second-order processes with time delay. AIChE J. 54(6), 1526–1536 (2008) CrossRefGoogle Scholar
  517. 517.
    Shamsuzzoha, M., Skogestad, S.: The setpoint overshoot method: a simple and fast closed-loop approach for PID tuning. J. Process Control 20, 1220–1234 (2010) CrossRefGoogle Scholar
  518. 518.
    Shamsuzzoha, M., Lee, K., Lee, M., Lee, J.: Design of IMC filter for improved disturbance rejection of PID controller. Theories Appl. Chem. Eng. 10(2), 1288–1291 (2004) Google Scholar
  519. 519.
    Shamsuzzoha, M., Lee, M., Lee, J.: IMC-PID controller tuning for improved disturbance rejection of unstable time delay processes. Theories Appl. Chem. Eng. 11(2), 1782–1785 (2005) Google Scholar
  520. 520.
    Shamsuzzoha, M., Park, J., Lee, M.: IMC based method for control system design of PID cascaded filter. Theories Appl. Chem. Eng. 12(1), 111–114 (2006) Google Scholar
  521. 521.
    Shamsuzzoha, M., Park, J., Lee, M.: PID controller design for unstable process with negative/positive zero. Theories Appl. Chem. Eng. 12(2), 1474–1477 (2006) Google Scholar
  522. 522.
    Shamsuzzoha, M., Lee, M., Park, J.: Robust PID controller design of time delay processes with/without zero. In: Proc. IEEE International Conference on Industrial Technol, pp. 2256–2261 (2006) CrossRefGoogle Scholar
  523. 523.
    Shamsuzzoha, M., Jeon, J., Lee, M.: Improved analytical PID controller design for the second order unstable process with time delay. In: Proc. European Symposium on Computer Aided Process Engineering, Bucharest, Romania, pp. 1–6 (2007) Google Scholar
  524. 524.
    Shamsuzzoha, M., Yoon, M., Lee, M.: Analytical controller design of integrating and first order unstable time delay process. In: Preprints Proc. 8th International IFAC Symposium on Dynamics and Control of Process Syst, Cancún, Mexico, vol. 2, pp. 397–402 (2007) Google Scholar
  525. 525.
    Shen, J.-C.: Tuning PID controller for a plant with under-damped response. In: Proc. IEEE International Conference on Control Applications, Hawaii, USA, pp. 115–120 (1999) Google Scholar
  526. 526.
    Shen, J.-C.: New tuning method for PID control of a plant with underdamped response. Asian J. Control 2(1), 31–41 (2000) CrossRefGoogle Scholar
  527. 527.
    Shen, J.-C.: New tuning method for PID controller. ISA Trans. 41, 473–484 (2002) CrossRefGoogle Scholar
  528. 528.
    Shi, J., Lee, W.S.: IMC-PID controllers for first-order plus dead-time processes: a simple design with guaranteed phase margin. In: Proc. IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Beijing, China, pp. 1397–1400 (2002) Google Scholar
  529. 529.
    Shi, J., Lee, W.S.: Set point response and disturbance rejection tradeoff for second-order plus dead time processes. In: Proc. 5th Asian Control Conference, Melbourne, Australia, pp. 881–887 (2004) Google Scholar
  530. 530.
    Shigemasa, T., Iino, Y., Kanda, M.: Two degrees of freedom PID auto-tuning controller. In: Proc. ISA International Conference and Exhibition. Advances in Instrumentation and Control, pp. 703–711 (1987) Google Scholar
  531. 531.
    Shin, C.-H., Yoon, M.-H., Park, I.-S.: Automatic tuning algorithm of the PID controller using two Nyquist points identification. In: Proc. Society of Instrument and Control Engineers Annual Conference, Tokyo, Japan, pp. 1225–1228 (1997) Google Scholar
  532. 532.
    Shinskey, F.G.: Process Control Systems—Application, Design and Tuning, 3rd edn. McGraw-Hill, New York (1988) Google Scholar
  533. 533.
    Shinskey, F.G.: Feedback Controllers for the Process Industries. McGraw-Hill, New York (1994) Google Scholar
  534. 534.
    Shinskey, F.G.: Process Control Systems—Application, Design and Tuning, 4th edn. McGraw-Hill, New York (1996) Google Scholar
  535. 535.
    Shinskey, F.G.: PID-deadtime control of distributed processes. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 14–18 (2000) Google Scholar
  536. 536.
    Shinskey, F.G.: PID-deadtime control of distributed processes. Control Eng. Pract. 9, 1177–1183 (2001) CrossRefGoogle Scholar
  537. 537.
    Shinskey, F.G.: Process control diagnostics (2003). Available at http://www.isa.org/CustomSource/ISA/Div_PDFs/PDF_News/CPI_1.pdf. Cited 4 January 2011
  538. 538.
    Sklaroff, M.: Adaptive controller in a process control system and a method therefor. US Patent 5,170,341 (1992) Google Scholar
  539. 539.
    Skoczowski, S.: Model following PID control with a fast model. In: Proc. 6th Portuguese Conference on Automatic Control, pp. 494–499 (2004) Google Scholar
  540. 540.
    Skoczowski, S., Tarasiejski, L.: Tuning of PID controllers based on gain and phase margin specifications using Strejc’s process model with time delay. In: Proc. 3rd International Symposium on Methods and Models in Automation and Robotics, Miedzyzdroje, Poland, pp. 765–770 (1996) Google Scholar
  541. 541.
    Skogestad, S.: Probably the best simple PID tuning rules in the world. AIChE Annual Meeting, Reno, USA (2001). Available at http://www.nt.ntnu.no/users/skoge/publications/2001/skogestad_reno/tuningpaper.pdf. Cited 4 January 2011
  542. 542.
    Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. J. Process Control 13, 291–309 (2003) CrossRefGoogle Scholar
  543. 543.
    Skogestad, S.: Lower limit on controller gain for acceptable disturbance rejection. In: Proc. International Symposium on Advanced Control of Chemical Processes, Hong Kong, China (2004) Google Scholar
  544. 544.
    Skogestad, S.: Simple analytic rules for model reduction and PID controller tuning. Model. Identif. Control 25, 85–120 (2004) MathSciNetCrossRefGoogle Scholar
  545. 545.
  546. 546.
    Skogestad, S.: Tuning for smooth PID control with acceptable disturbance rejection. Ind. Eng. Chem. Res. 45, 7817–7822 (2006) CrossRefGoogle Scholar
  547. 547.
    Slätteke, O.: Modeling and control of the paper machine drying section. Ph.D. thesis, Lund University, Sweden (2006) Google Scholar
  548. 548.
    Smith, L.: A modified Smith predictor for extruded diameter control. In: InstMC Mini Symposium in UKACC International Conference on Control, Swansea, UK (1998). Lecture 5 Google Scholar
  549. 549.
    Smith, C.L.: Intelligently tune PI controllers. Chemical Eng. August, 169–177 (2002) Google Scholar
  550. 550.
    Smith, C.L.: Intelligently tune PID controllers. Chemical Eng. January, 56–62 (2003) Google Scholar
  551. 551.
    Smith, C.A., Corripio, A.B.: Principles and Practice of Automatic Process Control, 2nd edn. Wiley, New York (1997) Google Scholar
  552. 552.
    Smith, C.L., Corripio, A.B., Martin, J.: Controller tuning from simple process models. Instrum. Technol. December, 39–44 (1975) Google Scholar
  553. 553.
    Solera, E.: Sintonización de controladores PI/PID con los criterios IAE e ITAE, para plantas de polo doble. Proyecto Eléctrico, Universidad de Costa Rica (2005). Available at http://www.eie.ucr.ac.cr/uploads/file/proybach/pb0508t.pdf. Cited 4 January 2011 (in Spanish)
  554. 554.
    Somani, M.K., Kothare, M.V., Chidambaram, M.: Design formulae for PI controllers. Hung. J. Ind. Chem. 20, 205–211 (1992) Google Scholar
  555. 555.
    Sree, R.P., Chidambaram, M.: Simple method of tuning PI controllers for stable inverse response systems. J. Indian Inst. Sci. 83, 73–85 (2003) Google Scholar
  556. 556.
    Sree, R.P., Chidambaram, M.: Control of unstable bioreactor with dominant unstable zero. Chem. Biochem. Eng. Q. 17(2), 139–145 (2003) Google Scholar
  557. 557.
    Sree, R.P., Chidambaram, M.: A simple method of tuning PI controllers for unstable systems with a zero. Chem. Biochem. Eng. Q. 17(3), 207–212 (2003) Google Scholar
  558. 558.
    Sree, R.P., Chidambaram, M.: Control of unstable reactor with an unstable zero. Indian Chem. Eng. Sect. A 46(1), 21–26 (2004) Google Scholar
  559. 559.
    Sree, R.P., Chidambaram, M.: Set point weighted PID controllers for unstable systems. Chem. Eng. Commun. 192, 1–13 (2005) CrossRefGoogle Scholar
  560. 560.
    Sree, R.P., Chidambaram, M.: A simple and robust method of tuning PID controllers for integrator/dead time processes. J. Chem. Eng. Jpn. 38(2), 113–119 (2005) CrossRefGoogle Scholar
  561. 561.
    Sree, R.P., Chidambaram, M.: Control of Unstable Systems. Alpha Science International, Oxford (2006) Google Scholar
  562. 562.
    Sree, R.P., Srinivas, M.N., Chidambaram, M.: A simple method of tuning PID controllers for stable and unstable FOPTD systems. Comput. Chem. Eng. 28, 2201–2218 (2004) CrossRefGoogle Scholar
  563. 563.
    Srinivas, M.N., Chidambaram, M.: Set-point weighted PID controllers. In: Proc. International Conference on Quality, Reliability and Control, Mumbai, India, pp. C22-1–C22-5 (2001) Google Scholar
  564. 564.
    Srividya, R., Chidambaram, M.: On-line controllers tuning for integrator plus delay systems. Process Control Qual. 9, 59–66 (1997) Google Scholar
  565. 565.
    St. Clair, D.W.: Controller Tuning and Control Loop Performance, 2nd edn. Straight Line Control CO, Newark (1997) Google Scholar
  566. 566.
    Streeter, M.J., Keane, M.A., Koza, J.R.: Automatic synthesis using genetic programming of improved PID tuning rules. In: Ruano, A.D. (ed.) Preprint Proc. Intelligent Control Syst. and Signal Processing Conference, pp. 494–499 (2003) Google Scholar
  567. 567.
    Sung, S.W., O, J., Lee, I.-B., Lee, J., Yi, S.-H.: Automatic tuning of PID controller using second-order plus time delay model. J. Chem. Eng. Jpn. 29, 991–999 (1996) CrossRefGoogle Scholar
  568. 568.
    Suyama, K.: A simple design method for sampled-data PID control systems with adequate step responses. In: Proc. International Conference on Industrial Electronics, Control, Instrumentation and Automation, pp. 1117–1122 (1992) CrossRefGoogle Scholar
  569. 569.
    Suyama, K.: A simple design method for sampled-data I-PD control systems. In: Proc. Annual Conference of the IEEE, Industrial Electronics Society, Hawaii, USA, pp. 2293–2298 (1993) Google Scholar
  570. 570.
    Syrcos, G., Kookos, I.K.: PID controller tuning using mathematical programming. Chem. Eng. Process. 44, 41–49 (2005) CrossRefGoogle Scholar
  571. 571.
    Tachibana, Y.: Identification of a system with dead time and its application to auto tuner. Electr. Eng. Jpn. 104, 128–137 (1984) CrossRefGoogle Scholar
  572. 572.
    Taguchi, H., Araki, M.: Two-degree-of-freedom PID controllers—their functions and optimal tuning. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 95–100 (2000) Google Scholar
  573. 573.
    Taguchi, H., Araki, M.: On tuning of two-degree-of-freedom PID controllers with consideration on location of disturbance input. Trans. Soc. Instrum. Control Eng. 38(5), 441–446 (2002) (in Japanese) Google Scholar
  574. 574.
    Taguchi, H., Doi, M., Araki, M.: Optimal parameters of two-degrees-of-freedom PID control systems. Trans. Soc. Instrum. Control Eng. 23(9), 889–895 (1987) (in Japanese) Google Scholar
  575. 575.
    Taguchi, H., Kokawa, M., Araki, M.: Optimal tuning of two-degree-of-freedom PD controllers. In: Proc. Asian Control Conference, Singapore, pp. 268–273 (2002) Google Scholar
  576. 576.
    Takatsu, H., Itoh, T.: Future needs for control theory in industry—report of the control technology survey of Japanese industry. IEEE Trans. Control Syst. Technol. 7(3), 298–305 (1999) CrossRefGoogle Scholar
  577. 577.
    Tan, K.K., Lee, T.H., Wang, Q.G.: Enhanced automatic tuning procedure for process control of PI/PID controller. AIChE J. 42, 2555–2562 (1996) CrossRefGoogle Scholar
  578. 578.
    Tan, W., Liu, J., Sun, W.: PID tuning for integrating processes. In: Proc. IEEE International Conference on Control Applications, Trieste, Italy, vol. 2, pp. 873–876 (1998) Google Scholar
  579. 579.
    Tan, W., Liu, K., Tam, P.K.S.: PID tuning based on loop-shaping H control. IEE Proc., Control Theory Appl. 145(6), 485–490 (1998) CrossRefGoogle Scholar
  580. 580.
    Tan, W., Yuan, Y., Niu, Y.: Tuning of PID controller for unstable process. In: Proc. IEEE International Conference on Control Applications, Hawaii, USA, pp. 121–124 (1999) Google Scholar
  581. 581.
    Tan, K.K., Wang, Q.G., Hang, C.C., Hägglund, T.J.: Advances in PID Control, Advances in Industrial Control Series. Springer, London (1999) Google Scholar
  582. 582.
    Tan, K.K., Lee, T.H., Jiang, X.: On-line relay identification, assessment and tuning of PID controller. J. Process Control 11, 483–496 (2001) CrossRefGoogle Scholar
  583. 583.
    Tang, W., Shi, S., Wang, M.: Autotuning PID control for large time-delay processes and its application to paper basis weight control. Ind. Eng. Chem. Res. 41, 4318–4327 (2002) CrossRefGoogle Scholar
  584. 584.
    Tang, W., Wang, M., Chao, Y., He, L., Itoh, H.: A study on the internal relationship among Smith predictor, Dahlin controller & PID. In: Proc. IEEE International Conference on Automation and Logistics, Jinan, China, pp. 3101–3106 (2007) CrossRefGoogle Scholar
  585. 585.
    Tavakoli, S., Banookh, A.: Robust PI control design using particle swarm optimization. J. Comput. Sci. Eng. 1(1), 36–41 (2010) Google Scholar
  586. 586.
    Tavakoli, S., Fleming, P.: Optimal tuning of PI controllers for first order plus dead time/long dead time models using dimensional analysis. In: Proc. European Control Conference, Cambridge, UK (2003) Google Scholar
  587. 587.
    Tavakoli, S., Tavakoli, M.: Optimal tuning of PID controllers for first order plus time delay models using dimensional analysis. In: Proc. 4th IEEE International Conference on Control and Automation, Canada, pp. 942–946 (2003) Google Scholar
  588. 588.
    Tavakoli, S., Griffin, I., Fleming, P.J.: Robust PI controller for load disturbance rejection and setpoint regulation. In: Proc. IEEE Conference on Control Applications, Toronto, Canada, pp. 1015–1020 (2005) Google Scholar
  589. 589.
    Tavakoli, S., Griffin, I., Fleming, P.J.: Tuning of decentralized PI (PID) controllers for TITO processes. Control Eng. Pract. 14, 1069–1080 (2006) CrossRefGoogle Scholar
  590. 590.
    Tavakoli, S., Griffin, I., Fleming, P.J.: Multi-objective optimization approach to the PI tuning problem. In: Proc. IEEE Congress on Evolutionary Computation, Singapore, pp. 3165–3171 (2007) CrossRefGoogle Scholar
  591. 591.
    Thomasson, F.Y.: Tuning guide for basic control loops. In: Proc. Process Control, Electrical and Information Conference, pp. 137–148 (1997) Google Scholar
  592. 592.
    Thyagarajan, T., Yu, C.-C.: Improved autotuning using the shape factor from relay feedback. Ind. Eng. Chem. Res. 42, 4425–4440 (2003) CrossRefGoogle Scholar
  593. 593.
    Thyagarajan, T., Esakkiappan, C., Sujatha, V.: Modelling and control of inverse response process with time delay using relay feedback test. In: Proc. International Conference on Modelling, Identification and Control, Okayama, Japan, pp. 494–499 (2010) Google Scholar
  594. 594.
    Tinham, B.: Tuning PID controllers. Control Instrum. September, 79–83 (1989) Google Scholar
  595. 595.
    Trybus, L.: A set of PID tuning rules. Arch. Control Sci. 15(LI)(1), 5–17 (2005) MathSciNetGoogle Scholar
  596. 596.
    Tsang, K.M., Rad, A.B.: A new approach to auto-tuning of PID controllers. Int. J. Syst. Sci. 26(3), 639–658 (1995) CrossRefGoogle Scholar
  597. 597.
    Tsang, K.M., Rad, A.B., To, F.W.: Online tuning of PID controllers using delayed state variable filters. In: Proc. IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering, Beijing, China, vol. 4, pp. 415–419. (1993) Google Scholar
  598. 598.
    Tyreus, B.D., Luyben, W.L.: Unusual dynamics of a reactor/preheater process with deadtime, inverse response and openloop instability. J. Process Control 3(4), 241–251 (1992) CrossRefGoogle Scholar
  599. 599.
    Umamaheswari, S., Palanisamy, V., Chidambaram, M.: A simple method of tuning PI controllers for interval plant of cold rolling mill. Int. J. Recent Trends Eng. 1(4), 41–45 (2009) Google Scholar
  600. 600.
    Umamaheswari, S., Palanisamy, V., Chidambaram, M.: A simple method of tuning PID controllers for interval plant of cold rolling mill. In: Proc. International Conference on Control, Automation, Communication and Energy Conservation, Erode, India, pp. 1–6 (2009) Google Scholar
  601. 601.
    Unar, M.A., Murray-Smith, D.J., Shah, S.F.A.: Technical Report CSC-96016 (1996). Available at http://www.mech.gla.ac.uk/Research/Control/Publications/Rabstracts/abs96016.html. Cited 14 December 2010
  602. 602.
    Universal Dynamic Technologies: Brainwave: The New Concept in Process Control. Sales Literature (1998) Google Scholar
  603. 603.
    Urrea, R., Castellanos-Sahagun, E., Alvarez, J., Alvarez-Ramirez, J.: Distillate cascade composition control using a two-temperature measurement secondary component. Ind. Eng. Chem. Res. 45, 6828–6841 (2006) CrossRefGoogle Scholar
  604. 604.
    Valentine, C.C., Chidambaram, M.: Robust PI and PID control of stable first order plus time delay systems. Indian Chem. Eng. Sect. A 39(1), 9–14 (1997) Google Scholar
  605. 605.
    Valentine, C.C., Chidambaram, M.: PID control of unstable time delay systems. Chem. Eng. Commun. 162, 63–74 (1997) CrossRefGoogle Scholar
  606. 606.
    Valentine, C.C., Chidambaram, M.: Robust control of unstable first order plus time delay systems. Indian Chem. Eng. Sect. A 40(1), 19–23 (1998) Google Scholar
  607. 607.
    Van der Grinten, P.M.E.M.: Finding optimum controller settings. Control Eng. December, 51–56 (1963) Google Scholar
  608. 608.
    VanDoren, V.J.: Ziegler–Nichols methods facilitate loop tuning. Control Eng. December 1998 Google Scholar
  609. 609.
    Van Overschee, P., De Moor, B.: RaPID: the end of heuristic PID tuning. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 687–692 (2000) Google Scholar
  610. 610.
    Velázquez-Figueroa, C.: Automated rule-based dynamic modelling and controller design. Ph.D. thesis, University of Connecticut, USA (1997) Google Scholar
  611. 611.
    Venkatashankar, V., Chidambaram, M.: Design of P and PI controllers for unstable first order plus time delay systems. Int. J. Control 60, 137–144 (1994) MathSciNetMATHCrossRefGoogle Scholar
  612. 612.
    Vilanova, R.: PID controller tuning rules for robust step-response of first-order-plus-dead-time models. In: Proc. American Control Conference, Minneapolis, USA, pp. 256–261 (2006) Google Scholar
  613. 613.
    Vilanova, R., Balaguer, P.: ISA-PID controller tuning: a combined min-max/ise approach. In: Proc. IEEE International Conference on Control Applications, Munich, Germany, pp. 2956–2961 (2006) CrossRefGoogle Scholar
  614. 614.
    Visioli, A.: Optimal tuning of PID controllers for integral and unstable processes. IEE Proc., Control Theory Appl. 148(1), 180–184 (2001) CrossRefGoogle Scholar
  615. 615.
    Visioli, A.: Improving the load disturbance rejection performances of IMC-tuned PID controllers. In: Proc. IFAC World Congress, Barcelona, Spain, pp. 295–300 (2002) Google Scholar
  616. 616.
    Visioli, A.: Experimental evaluation of a Plug&Control strategy for level control. In: Proc. IFAC World Congress, Prague, Czech Republic (2005) Google Scholar
  617. 617.
    Visioli, A.: Practical PID Control. Springer, London (2006) MATHGoogle Scholar
  618. 618.
    Vítečková, M.: Seřízení číslicových I analogových regulátorů pro regulované soustavy s dopravním zpoždčním [Digital and analog controller tuning for processes with time delay]. Automatizace 42(2), 106–111 (1999) (in Czech) Google Scholar
  619. 619.
    Vítečková, M.: Ukazatelé kvality pro regulační obvody seřízené metodou inverze dynamiki. In: Proc. ASR 2001 Seminar, Instruments and Control, Ostrava, Czech Republic, pp. 1–6 (2001) (in Czech) Google Scholar
  620. 620.
    Vítečková, M.: Simple PI and PID controller tuning. Sb. Věd. Pr. Vysoké šk. Báň.-Tech. Univ. Ostrava, Řada Strojní 2(LII), 225–230 (2006). Available at http://www.fs.vsb.cz/transactions/2006-2/1562_VITECKOVA_Miluse.pdf. Cited 4 January 2011 Google Scholar
  621. 621.
    Vítečková, M., Víteček, A.: Analytical controller tuning method for proportional non-oscillatory plants with time delay. In: Proc. International Carpathian Control Conference, Malenovice, Czech Republic, pp. 297–302 (2002) Google Scholar
  622. 622.
    Vítečková, M., Víteček, A.: Analytical digital and analog controller tuning method for proportional non-oscillatory plants with time delay. In: Proc. 2nd IFAC Conference on Control Syst. Design, Bratislava, Slovak Republic, pp. 59–64 (2003) Google Scholar
  623. 623.
    Vítečková, M., Víteček, A.: Controller tuning for integral plus time delay plants. In: Sborník vědeckých prací Vysoké školy báňské—Technické univerzity Ostrava, Ostrava, Czech Republic, pp. 159–166 (2007). Available at http://www.fs.vsb.cz/transactions/2007-2/1571_VITECKOVA_Miluse_VITECEK_Antonin.pdf. Cited 4 January 2011 Google Scholar
  624. 624.
    Vítečková, M., Víteček, A.: Two-degree of freedom controller tuning for integral plus time delay plants. ICIC Express Lett. 2(3), 225–229 (2008) Google Scholar
  625. 625.
    Vítečková, M., Víteček, A., Smutný, L.: Controller tuning for controlled plants with time delay. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 283–288 (2000) Google Scholar
  626. 626.
    Vítečková, M., Víteček, A., Smutný, L.: Simple PI and PID controllers tuning for monotone self-regulating plants. In: Preprints Proc. PID ’00: IFAC Workshop on Digital Control, Terrassa, Spain, pp. 289–294 (2000) Google Scholar
  627. 627.
    Vivek, S., Chidambaram, M.: An improved relay autotuning of PID controllers for unstable FOPDT systems. Comput. Chem. Eng. 29, 2060–2068 (2005) CrossRefGoogle Scholar
  628. 628.
    Voda, A., Landau, I.D.: The autocalibration of PI controllers based on two frequency measurements. Int. J. Adapt. Control Signal Process. 9, 395–421 (1995) MathSciNetMATHCrossRefGoogle Scholar
  629. 629.
    Vrančić, D.: Design of anti-windup and bumpless transfer protection. Part II: PID controller tuning by multiple integration method. PhD thesis, University of Ljubljana, J. Stefan Institute, Ljubljana, Slovenia (1996) Google Scholar
  630. 630.
    Vrančić, D., Lumbar, S.: Improving PID controller disturbance rejection by means of magnitude optimum. Report DP-8955. J. Stefan Institute, Ljubljana, Slovenia (2004) Google Scholar
  631. 631.
    Vrančić, D., Peng, Y., Strmčnik, S., Hanus, R.: A new tuning method for PI controllers based on a process step response. In: Proc. CESA ’96 IMACS MultiConference Symposium on Control, Optimisation and Supervision, Lille, France, vol. 2, pp. 790–794 (1996) Google Scholar
  632. 632.
    Vrančić, D., Peng, Y., Strmčnik, S., Juričić, D.: A multiple integration tuning method for filtered PID controller. In: Preprints Proc. IFAC 14th World Congress, Beijing, China (1999). Paper 3b-02-3 Google Scholar
  633. 633.
    Vrančić, D., Kocijan, J., Strmčnik, S.: Simplified disturbance rejection tuning method for PID controllers. In: Proc. 5th Asian Control Conference, Melbourne, Australia, vol. 1, pp. 492–497 (2004) Google Scholar
  634. 634.
    Vrančić, D., Kristiansson, B., Strmčnik, S.: Reduced MO tuning method for PID controllers. In: Proc. 5th Asian Control Conference, Melbourne, Australia, vol. 1, pp. 460–465 (2004) Google Scholar
  635. 635.
    Wade, H.L.: Regulatory and Advanced Regulatory Control: System Development. ISA, North Carolina, USA (1994) Google Scholar
  636. 636.
    Wang, X.-S.: PID controller tuning method for improving performance. Opt. Precis. Eng. 8(4), 381–384 (2000) (in Chinese) Google Scholar
  637. 637.
    Wang, J.-Y.: Control system design using the NCD technique. Masters thesis, Feng Chia University, Taiwan. Available at http://ethesys.lib.fcu.edu.tw. Cited 25 October 2006
  638. 638.
    Wang, Y.-G., Cai, W.-J.: PID tuning for integrating processes with sensitivity specification. In: Proc. IEEE Conference on Decision and Control, Orlando, USA, pp. 4087–4091 (2001) Google Scholar
  639. 639.
    Wang, Y.-G., Cai, W.-J.: Advanced proportional-integral-derivative tuning for integrating and unstable processes with gain and phase margin specifications. Ind. Eng. Chem. Res. 41, 2910–2914 (2002) CrossRefGoogle Scholar
  640. 640.
    Wang, T.-S., Clements, W.C.: Adaptive multivariable PID control of a distillation column with unknown and varying dead time. Chem. Eng. Commun. 132, 1–13 (1995) CrossRefGoogle Scholar
  641. 641.
    Wang, L., Cluett, W.R.: Tuning PID controllers for integrating processes. IEE Proc., Control Theory Appl. 144(5), 385–392 (1997) MathSciNetMATHCrossRefGoogle Scholar
  642. 642.
    Wang, L., Cluett, W.R.: From Plant Data to Process Control. Taylor and Francis, New York (2000) Google Scholar
  643. 643.
    Wang, H., Jin, X.: Direct synthesis approach of PID controller for second-order delayed unstable processes. In: Proc. 5th World Congress on Intelligent Control and Automation, Hangzhou, China, pp. 19–23 (2004) CrossRefGoogle Scholar
  644. 644.
    Wang, Y.-G., Shao, H.-H.: PID autotuner based on gain- and phase-margin specification. Ind. Eng. Chem. Res. 38, 3007–3012 (1999) CrossRefGoogle Scholar
  645. 645.
    Wang, Y.-G., Shao, H.-H.: Automatic tuning of optimal PI controllers. In: Proc. IEEE Conference on Decision and Control, Phoenix, Arizona, pp. 3802–3803 (1999) Google Scholar
  646. 646.
    Wang, Y.-G., Shao, H.-H.: Optimal tuning for PI controller. Automatica 36, 147–152 (2000) MathSciNetMATHCrossRefGoogle Scholar
  647. 647.
    Wang, Y.-G., Shao, H.-H.: PID auto-tuner based on sensitivity specification. Trans. Inst. Chem. Eng. 78(A), 312–316 (2000) CrossRefGoogle Scholar
  648. 648.
    Wang, Y.-G., Xu, X.-M.: PID tuning for unstable processes with sensitivity specification. In: Proc. Chinese Control and Decision Conference, Guilin, China, pp. 3460–3464 (2009) CrossRefGoogle Scholar
  649. 649.
    Wang, F.-S., Juang, W.-S., Chan, C.-T.: Optimal tuning of PID controllers for single and cascade control loops. Chem. Eng. Commun. 132, 15–34 (1995) CrossRefGoogle Scholar
  650. 650.
    Wang, L., Barnes, T.J.D., Cluett, W.R.: New frequency-domain design method for PID controllers. IEE Proc., Control Theory Appl. 142, 265–271 (1995) MATHCrossRefGoogle Scholar
  651. 651.
    Wang, Q.-G., Lee, T.-H., Fung, H.-W., Bi, Q., Zhang, Y.: PID tuning for improved performance. IEEE Trans. Control Syst. Technol. 7(4), 457–465 (1999) CrossRefGoogle Scholar
  652. 652.
    Wang, Q.-G., Zhang, Y., Guo, X.: Robust closed-loop controller auto-tuning. In: Proc. 15th IEEE International Symposium on Intelligent, Control, Rio, Patras, Greece, pp. 133–138 (2000) Google Scholar
  653. 653.
    Wang, Y.-G., Shao, H.-H., Wang, J.: PI tuning for processes with large dead time. In: Proc. American Control Conference, Chicago, USA, pp. 4274–4278 (2000) Google Scholar
  654. 654.
    Wang, Q.-G., Zhang, Y., Guo, X.: Robust closed-loop identification with application to auto-tuning. J. Process Control 11, 519–530 (2001) CrossRefGoogle Scholar
  655. 655.
    Wang, Y.-G., Cai, W.-J., Shi, Z.-G.: PID autotuning for integrating processes with specifications on gain and phase margins. In: Proc. American Control Conference, Arlington, USA, pp. 2181–2185 (2001) Google Scholar
  656. 656.
    Wang, Y., Schinkel, M., Schmitt-Hartmann, T., Hunt, K.J.: PID and PID-like controller design by pole assignment within D-stable regions. Asian J. Control 4(4), 423–432 (2002) CrossRefGoogle Scholar
  657. 657.
    Wang, J.-G., Zhang, J.-G., Zhao, Z.-C.: Extended IMC-PID control for integrator and dead time process. Electr. Mach. Control 9(2), 133–135 (2005) (in Chinese) MathSciNetGoogle Scholar
  658. 658.
    Wang, C., Luo, Y., Chen, Y.: Fractional order proportional integral (FOPI) and [proportional integral] (FO[PI]) controller designs for first order plus time delay (FOPTD) systems. In: Proc. Chinese Control and Decision Conference, Guilin, China, pp. 329–334 (2009) CrossRefGoogle Scholar
  659. 659.
    Wills, D.M.: Tuning maps for three-mode controllers. Control Eng. April, 104–108 (1962) Google Scholar
  660. 660.
    Wills, D.M.: A guide to controller tuning. Control Eng. August, 93–95 (1962) Google Scholar
  661. 661.
    Wilton, S.R.: Controller tuning. ISA Trans. 38, 157–170 (1999) CrossRefGoogle Scholar
  662. 662.
    Witt, S.D., Waggoner, R.C.: Tuning parameters for non-PID three-mode controllers. Hydrocarb. Process. June, 74–78 (1990) Google Scholar
  663. 663.
    Wojsznis, W.K., Blevins, T.L.: System and method for automatically tuning a process controller. US Patent Number 5,453,925 (1995) Google Scholar
  664. 664.
    Wojsznis, W.K., Blevins, T.L., Thiele, D.: Neural network assisted control loop tuner. In: Proc. IEEE International Conference on Control Applications, Hawaii, USA, vol. 1, pp. 427–431 (1999) Google Scholar
  665. 665.
    Wolfe, W.A.: Controller settings for optimum control. Trans. ASME 73, 413–418 (1951) Google Scholar
  666. 666.
    Xing, J., Wang, P., Wang, L.: A self-tuning PID controller based on expert system. In: Proc. IFAC New Technologies for Computer Control Conference, Hong Kong, China, pp. 479–484 (2001) Google Scholar
  667. 667.
    Xu, J., Shao, H.: Advanced PID tuning for integrating processes with a new robustness specification. In: Proc. American Control Conference, Denver, USA, pp. 3961–3966 (2003) Google Scholar
  668. 668.
    Xu, J., Shao, H.: Advanced PID tuning for unstable processes based on a new robustness specification. In: Proc. American Control Conference, Denver, USA, pp. 368–372 (2003) Google Scholar
  669. 669.
    Xu, J., Shao, H.: A novel method of PID tuning for integrating processes. In: Proc. 42nd IEEE Conference on Decision and Control, Maui, USA, pp. 139–142 (2003) Google Scholar
  670. 670.
    Xu, J., Shao, H.: A new tuning method of PID controller for integrating processes. Chin. J. Sci. Instrum. 25(6), 714–716 (2004) (in Chinese) Google Scholar
  671. 671.
    Xu, J., Shao, H.: A new tuning method of PID controller for integrating processes. Chin. J. Sci. Instrum. 25(6), 720 (2004) (in Chinese) Google Scholar
  672. 672.
    Xu, J., Shao, H.: PI tuning for large dead-time processes with a new robustness specification. J. Syst. Eng. Electron. 15(3), 333–336 (2004) Google Scholar
  673. 673.
    Xu, J.-H., Sun, R., Shao, H.-H.: PI controller tuning for large dead-time processes. Control Decis. 19(1), 99–101 (2004) (in Chinese) Google Scholar
  674. 674.
    Xu, Y., Deng, H., Zhang, P., Yang, J.: Tuning PI/PID active queue management controllers supporting TCP/IP flows. In: Proc. International Conference on Communications, Circuits and Syst., Hong Kong, China, vol. 1, pp. 630–634 (2005) Google Scholar
  675. 675.
    Yang, J.C.-Y., Clarke, D.W.: Control using self-validating sensors. Trans. Inst. Meas. Control 18, 15–23 (1996) CrossRefGoogle Scholar
  676. 676.
    Yang, P., Pan, S.: New PID parameters tuning formulae for relay feedback self-tuning. In: Proc. IEEE International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, pp. 567–569 (2008) Google Scholar
  677. 677.
    Yi, C., De Moor, B.L.R.: Robustness analysis and control system design for a hydraulic servo system. IEEE Trans. Control Syst. Technol. 2(3), 183–197 (1994) CrossRefGoogle Scholar
  678. 678.
    Young, A.J.: An Introduction to Process Control System Design. Longman, Green, London (1955) Google Scholar
  679. 679.
    Yu, S.W.: Optimal PI tuning for load disturbances. J. Chin. Inst. Chem. Eng. 19(6), 349–357 (1988) Google Scholar
  680. 680.
    Yu, C.-C.: Autotuning of PID Controllers. Advances in Industrial Control Series. Springer, London (1999) MATHGoogle Scholar
  681. 681.
    Yu, C.-C.: Autotuning of PID Controllers, 2nd edn. Advances in Industrial Control Series. Springer, London (2006) Google Scholar
  682. 682.
    Yu, L., Ma, M., Hu, W., Shi, Z., Shu, Y.: Design of parameter tunable robust controller for active queue management based on H control theory. J. Netw. Comput. Appl. (2010). doi:10.1016/j.jnca.2010.10.006 Google Scholar
  683. 683.
    Žáková, K.: One type of controller design for delayed double integrator system. WSEAS Trans. Syst. Control 1(3), 62–69 (2008) Google Scholar
  684. 684.
    Zamani, Z.T., Moshiri, B., Fatehi, A., Sedigh, A.K.: Relay feedback based monitoring and autotuning of processes with gain nonlinearity. In: Proc. UK Automatic Control Conference, Manchester, UK (2008) Google Scholar
  685. 685.
    Zhang, D.: Process dynamics and controller selection of DCS. In: Proc. ISA Advances in Instrumentation and Control Conference, Anaheim, USA, vol. 49, Part 2, pp. 231–240 (1994) Google Scholar
  686. 686.
    Zhang, W.: Analytical design for process control. Post-doctoral Research Report (1998). Available at http://automation.sjtu.edu.cn/wdzhang/pdfrpt.pdf. Cited 29 September 2009 (in Chinese)
  687. 687.
    Zhang, W.: Optimal design of the refined Ziegler–Nichols proportional-integral-derivative controller for stable and unstable processes with time delays. Ind. Eng. Chem. Res. 45, 1408–1419 (2006) CrossRefGoogle Scholar
  688. 688.
    Zhang, W., Xu, X.: H PID controller design for runaway processes with time delay. ISA Trans. 41, 317–322 (2002) CrossRefGoogle Scholar
  689. 689.
    Zhang, W.D., Sun, Y.X., Xu, X.M.: Modified PID controller based on H theory. In: Proc. IEEE International Conference on Industrial Technol, pp. 9–12 (1996) Google Scholar
  690. 690.
    Zhang, G., Shao, C., Chai, T.: A new method for independently tuning PID parameters. In: Proc. Conference on Decision and Control, Kobe, Japan, pp. 2527–2532 (1996) Google Scholar
  691. 691.
    Zhang, W., Sun, Y., Xu, X.: PID control for integrator and dead time process. Acta Autom. Sin. 25(4), 518–523 (1999) (in Chinese) MathSciNetGoogle Scholar
  692. 692.
    Zhang, W., Xu, X., Sun, Y.: Quantitative performance design for integrating processes with time delay. Automatica 35, 719–723 (1999) MathSciNetMATHCrossRefGoogle Scholar
  693. 693.
    Zhang, W., Xu, X., Zhang, W.: PID design of unstable processes by using closed loop constraints. J. Shanghai Jiaotong Univ. 34(5), 589–592 (2000) MATHGoogle Scholar
  694. 694.
    Zhang, J.-G., Liu, Z.-Y., Pei, R.: Two-degree-of-freedom PID control for integrator and dead time process. Control Decis. 17(6), 886–889 (2002) (in Chinese) Google Scholar
  695. 695.
    Zhang, J., Li, L., Chen, Z., Zhao, Z.: IMC tuning of two-degree-of-freedom regulator. Chin. J. Sci. Instrum. 23(1), 28–30 (2002) (in Chinese) Google Scholar
  696. 696.
    Zhang, J., Li, L., Chen, Z., Zhao, Z.: IMC tuning of two-degree-of-freedom regulator. Chin. J. Sci. Instrum. 23(1), 48 (2002) (in Chinese) Google Scholar
  697. 697.
    Zhang, W., Xi, Y., Yang, G., Xu, X.: Design PID controllers for desired time-domain or frequency-domain response. ISA Trans. 41, 511–520 (2002) CrossRefGoogle Scholar
  698. 698.
    Zhang, W., Gu, D., Xu, X.: A unified approach to design the RZN PID controller for stable and unstable processes with time delay. In: Proc. IEEE Conference on Decision and Control, Maui, USA, pp. 4080–4081 (2003) Google Scholar
  699. 699.
    Zhang, F.-B., Wang, G.-D., Zhang, D.-H., Liu, X.-H.: Optimal ITAE tuning formulae for parameters of PID controller. J. Northeast. Univ. Nat. Sci. 26(8), 755–758 (2005) MathSciNetGoogle Scholar
  700. 700.
    Zhang, J., Wang, J., Zhao, Z.: A novel two-degree-of-freedom PID controller for integrator and dead time process. In: Proc. World Congress on Intelligent Control and Automation, Dalian, China, pp. 6388–6391 (2006) CrossRefGoogle Scholar
  701. 701.
    Zhao, Y., Jia, L., Cai, W.: The system identification and PID auto-tuning for unstable processes. In: Proc. IEEE Conference on Industrial Electronics and Applications, Singapore, pp. 176–180 (2008) CrossRefGoogle Scholar
  702. 702.
    Zhong, Q.-C., Li, H.-X.: 2-degree-of-freedom proportional-integral-derivative-type controller incorporating the Smith principle for processes with dead time. Ind. Eng. Chem. Res. 41, 2448–2454 (2002) CrossRefGoogle Scholar
  703. 703.
    Zhou, X., Dong, X., Zhang, Y., Fang, Y.: Automatic tuning of PI controller for atomic force microscope based on relay with hysteresis. In: Proc. IEEE International Conference on Control Applications, St. Petersburg, Russia, pp. 1271–1275 (2009) Google Scholar
  704. 704.
    Zhuang, M.: Computer-aided PID controller design. Ph.D. thesis. University of Sussex, UK (1992) Google Scholar
  705. 705.
    Zhuang, M., Atherton, D.P.: Automatic tuning of optimum PID controllers. IEE Proc. Part D. Control Theory Appl. 140, 216–224 (1993) MATHCrossRefGoogle Scholar
  706. 706.
    Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64, 759–768 (1942) Google Scholar
  707. 707.
    Zou, H., Brigham, S.E.: Process control system with asymptotic auto-tuning. US Patent Number 5,818,714 (1998) Google Scholar
  708. 708.
    Zou, H., Hedstrom, K.P., Warrior, J., Hays, C.L.: Field based process control system with auto-tuning. US Patent Number 5,691,896 (1997) Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  1. 1.School of Electrical Engineering SystemsDublin Institute of TechnologyDublin 8Ireland

Personalised recommendations