Dynamic Simulations of Free-Floating Space Robots

  • Tomasz RybusEmail author
  • Karol Seweryn
  • Marek Banaszkiewicz
  • Krystyna Macioszek
  • Bernd Mädiger
  • Josef Sommer
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 422)


This paper focuses on the dynamics of a 6-dof manipulator mounted on a free-flying servicer satellite during final part of an on-orbit rendezvous maneuver. Determination of reaction torques induced by the manipulator on the servicer satellite is critical for the development of the Guidance, Navigation and Control (GNC) subsystem. Presented in this paper is a path planning algorithm for capturing a tumbling target satellite, as well as simulation results of the capture maneuver and folding of the manipulator with the attached target satellite. The second part of this paper is focused on the presentation of our work leading to the construction of a planar air-bering test-bed for space manipulators.


Space Debris Space Robot Geostationary Earth Orbit Path Planning Algorithm Joint Controller 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aghili, F.: Optimal Control for Robotic Capturing and Passivation of a Tumbling Satellite with Unknown Dynamics. In: AIAA GNC Conference and Exhibit. Honolulu, Hawaii, USA (2008)Google Scholar
  2. 2.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms. Springer, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Cougnet, C., Gerber, B., Heemskerk, C., et al.: On-Orbit Servicing System of a GEO Satellite Fleet. In: ASTRA 2006, ESTEC, Noordwijk, The Netherlands (2006)Google Scholar
  4. 4.
    Dionnet, F., Marchand, E.: Robust model-based tracking with multiple cameras for spatian applications. In: ASTRA 2006, ESTEC, Noordwijk, The Netherlands (2006)Google Scholar
  5. 5.
    Haug, E.: Computer Aided Kinematics and Dynamics of Mechanical Systems. In: Basic Methods, vol. 1. Allyn and Bacon, London (1989)Google Scholar
  6. 6.
    Kapellos, K., Chaumette, F., et al.: VIMANCO: ASTRA 2006, ESTEC, Noordwijk, The Netherlands (2006)Google Scholar
  7. 7.
    Kawamoto, S., Nishida, S., Kibe, S.: Research on a Space Debris Removal System. NAL Res. Prog. 2002/2003 (2003)Google Scholar
  8. 8.
    Kreisel, J.: On-Orbit Servicing of Satellites (OOS): Its Potential Market & Impact. In: ASTRA 2002, ESTEC, Noordwijk, The Netherlands (2002)Google Scholar
  9. 9.
    Landzettel, K., Albu-Schaffer, A., et al.: Robotic On-Orbit Servicing – DLR’s Experience and Perspective. In: Proceedings of the 2006 IEEE/RSJ, IROS, Beijing, China (2006)Google Scholar
  10. 10.
    Lewis, H., Swinerd, G., et al.: Active Removal Study for On-Orbit Debris Using DAMAGE. In: Proc. 5th European Conference on Space Debris, Darmstadt, Germany (2009)Google Scholar
  11. 11.
    Liou, J.-C., Johnson, N.L.: Risks in Space from Orbiting Debris. Science (311) (2006)Google Scholar
  12. 12.
    Menon, C., Aboudan, A., et al.: Free-Flying Robot Tested on Parabolic Flights: Kinematic Control. Journal of Guidance, Control and Dynamics 28(4) (2005)Google Scholar
  13. 13.
    Menon, C., Busolo, S., et al.: Issues and solutions for testing free-flying robots. Acta Astronautica 60 (2007)Google Scholar
  14. 14.
    Mueller, R., Kreisel, J.: On-Orbit Servicing (OOS) Concept Trades Based on the S@tMax System. In: ASTRA 2006, ESTEC, Noordwijk, The Netherlands (2006)Google Scholar
  15. 15.
    Rebele, B., Krenn, R., Schäfer, B.: Grasping Strategies and Dynamic Aspects in Satellite Capturing by Robotic Manipulator. In: ASTRA 2002, ESTEC, Noordwijk, The Netherlands (2002)Google Scholar
  16. 16.
    Rekleitis, I., Martin, E., et al.: Autonomous Capture of a Tumbling Satellite. Journal of Field Robotics 24(4), 1–XXXX (2007)CrossRefGoogle Scholar
  17. 17.
    Rupp, T., Boge, T., et al.: Flight Dynamics Challenges of the German On-Orbit Servicing Mission DEOS. In: 21st International Symposium on Space Flight Dynamics, Toulouse, France (2009)Google Scholar
  18. 18.
    Schwarz, J., Peck, M., Hall, C.: Historical Review of Air-Bearing Spacecraft Simulators. Journal of Guidance, Control and Dynamics 26(4) (2003)Google Scholar
  19. 19.
    Seweryn, K., Banaszkiewicz, M.: Optimization of the Trajectory of a General Free-flying Manipulator During the Rendezvous Maneuver. In: AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, Hawaii, USA (2008)Google Scholar
  20. 20.
    Seweryn, K., Banaszkiewicz, M.: Trajectories of a Manipulator During the Satellite Rendezvous Maneuver. In: 1st ESA Workshop on Multibody Dynamics for Space Applications, ESTEC, Noordwijk, The Netherlands (2010)Google Scholar
  21. 21.
    Seweryn, K., Rybus, T.: Interaction of satellites during the final phase of the rendezvous maneuver: ROBOT. Technical report part II, Space Research Centre PAS (2010)Google Scholar
  22. 22.
    Sellmaier, F., Boge, T., et al.: On-orbit Servicing Missions: Challenges and Solutions for Spacecraft Operations. In: SpaceOps, Conference, Huntsville, Alabama, USA (2010)Google Scholar
  23. 23.
    Waltz, D.M.: On-orbit Servicing of Space Systems. Kriger Publishing Co., Malabar (1993)Google Scholar
  24. 24.
    Wood, G., Kennedy, D.: Simulating Mechanical Systems in Simulink with SimMechanics. Technical report, The MathWorks, Inc., Natick, USA (2003)Google Scholar
  25. 25.
    Yasaka, T., Ashford, W.: GSV: An Approach Toward Space System Servicing. Earth Space Review 5(2) (1996)Google Scholar

Copyright information

© Springer London 2012

Authors and Affiliations

  • Tomasz Rybus
    • 1
    Email author
  • Karol Seweryn
    • 1
  • Marek Banaszkiewicz
    • 1
  • Krystyna Macioszek
    • 1
  • Bernd Mädiger
    • 2
  • Josef Sommer
    • 2
  1. 1.Space Research CentrePolish Academy of SciencesWarsawPoland
  2. 2.ASTRIUM Space Transportation GmbHBremenGermany

Personalised recommendations