Perception-Based Motion Planning for a Walking Robot in Rugged Terrain

  • Dominik BelterEmail author
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 422)


The article presents a path planning algorithm called guided RRT for a six-legged walking robot. The proposed method considers the problem of planning a sequence of elementary motions (steps) and its implementation on the real robot. It takes into account that the robot has limited abilities to perceive the environment. The A* algorithm is used for long horizon planning on a map obtained from the stereo camera data. Then, the RRT-Connect method is used to find a sequence of feasible movements for the body and feet of the robot on a more precise map obtained by using the Hokuyo laser rangefinder. A strategy for path planning is proposed. Experimental results which show efficiency of the algorithm are presented.


Motion Planning Path Planning Stereo Camera Rough Terrain Rugged Terrain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belter, D., Skrzypczyński, P.: Integrated Motion Planning for a Hexapod Robot Walking on Rough Terrain. In: 18th IFAC World Congress (2011) (in print) Google Scholar
  2. 2.
    Belter, D., Skrzypczyński, P.: A Biologically Inspired Approach to Feasible Gait Learning for a Hexapod Robot. Int. Journal of Applied Math. and Comp. Sci. 20(1), 69–84 (2010)CrossRefGoogle Scholar
  3. 3.
    Belter, D., Skrzypczyński, P.: Rough Terrain Mapping and Classification for Foothold Selection in a Walking Robot. In: Proc. IEEE Int. Workshop on Safety, Security and Rescue Robotics, CD-ROM, Bremen, Germany (2010)Google Scholar
  4. 4.
    Benoit, M., Rusu, R.B., Sundaresan, A., Hauser, K., Agrawal, M., Latombe, J.C., Beetz, M.: Leaving Flatland: Toward real-time 3D navigation. In: Proc. IEEE Int. Conf. on Robotics and Automation, Kobe, Japan, pp. 3786–3793 (2009)Google Scholar
  5. 5.
    Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., Schaal, S.: Fast, robust quadruped locomotion over challenging terrain. In: Proc. IEEE Int. Conf. on Robot. and Autom., Anchorage, USA, pp. 2665–2670 (2010)Google Scholar
  6. 6.
    Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. & Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  7. 7.
    Kirby, R., Simmons, R., Forlizzi, J.: Variable sized grid cells for rapid replanning in dynamics environment. In: Proc. IEEE Int. Conf. on Intelligent Robots and Systems, St. Louis, USA, pp. 4913–4918 (2009)Google Scholar
  8. 8.
    Kuffner Jr., J.J., LaValle S. M.: RRT-connect: An efficient approach to single-query path planning. In: Proc. Int. Conf. on Robot. and Autom., San Francisco, pp. 995–1001 (2000)Google Scholar
  9. 9.
    Latombe, J.-C.: Robot Motion Planning. Kluwer, Norwell (1991)CrossRefGoogle Scholar
  10. 10.
    LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: Progress and prospects. In: Donald, B.R., et al. (eds.) Algorithmic and Computational Robotics: New Directions, Wellesley, MA, pp. 293–308 (2001)Google Scholar
  11. 11.
    Lindemann, S.R., LaValle, S.M.: Steps Toward Derandomizing RRTs. In: Proc. 4th Int. Work. on Robot Motion and Control, Poznań, Poland, pp. 271–277 (2004)Google Scholar
  12. 12.
    Sanctis, L., Garrido, S., Moreno, L., Blanco, D.: Outdoor Motion Planning Using Fast Marching. In: Tosun, O., et al. (eds.) Mobile robotics: Solutions and Challenges, Istanbul, Turkey, pp. 1071–1080 (2009)Google Scholar
  13. 13.
    Sanchez, L.A., Zapata, R., Osorio, L.M.: Sampling-Based Motion Planning: A Survey. Computacion y Sistemas 12(1), 5–24 (2008)Google Scholar
  14. 14.
    Wooden, D., Malchano, M., Blankenspoor, K., Howard, A., Rizzi, A., Raibert, M.: Autonomous Navigation for BigDog. In: Proc. IEEE Int. Conf. on Robot. and Autom., Anchorage, USA, pp. 4736–4741 (2010)Google Scholar

Copyright information

© Springer London 2012

Authors and Affiliations

  1. 1.Institute of Control and Information EngineeringPoznań University of TechnologyPoznańPoland

Personalised recommendations