Solving Flow Shop Problems with Bounded Dynamic Programming

  • Joaquín Bautista
  • Alberto Cano
  • Ramon Companys
  • Imma Ribas
Conference paper

Abstract

We present some results attained with the bounded dynamic programming algorithms to solve the Fm|prmu|Cmax and the Fm|block|Cmax problems using the well-known Taillard instances as experimental data. We have improved four of the best-known solutions of the Taillard’s instances for the Fm|block|Cmax problem and we have confirmed the optimality of six solutions for the Fm|prmu|Cmax case.

References

  1. Bautista J (1993) Procedimientos heurísticos y exactos para la secuenciación en sistemas productivos de unidades homogéneas (contexto J.I.T.). Doctoral Thesis, DOE, ETSEIB-UPCGoogle Scholar
  2. Bautista J, Companys R, Corominas A (1996) Heuristics and exact algorithms for solving the Monden problem. Eur J Oper Res 88:101–113CrossRefMATHGoogle Scholar
  3. Bautista J, Cano A (2011) Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimization and interruption rules. Eur J Oper Res 210:495–513CrossRefMATHGoogle Scholar
  4. Bautista J, Cano A, Companys R, Ribas I (2011) Solving the Fm∣block∣Cmax problem using bounded dynamic programming. Engineering Applications of Artificial Intelligence, Corrected Proof (DOI: 10.1016/j.engappai.2011.09.001) in press
  5. Garey MR, Johnson DS, Sethi R (1976) Complexity of flowshop and jobshop scheduling. Math Oper Res 1(2):117–129CrossRefMATHMathSciNetGoogle Scholar
  6. Gilmore PC, Lawler EL, Shmoys DB (1985) Well-solved special cases. In: Lawler EL, Lenstra KL, Rinooy Kan AHG, Shmoys DB (eds) The traveling salesman problem: a guided tour of combinatorial optimization, Wiley, New YorkGoogle Scholar
  7. Hall NG, Sriskandarajah C (1996) A survey of machine scheduling problems with blocking and no wait in process. Oper Res 44(3):510–525CrossRefMATHMathSciNetGoogle Scholar
  8. Hejazi RS, Saghafian S (2005) Flowshop-scheduling problems with makespan criterion: a review. Int J Prod Res 43(14):2895–2929CrossRefMATHGoogle Scholar
  9. Johnson SM (1954) Optimal two-and three-stage production schedules with set up times included. Naval Res Logist Quart 1:61–68CrossRefGoogle Scholar
  10. Reddi SS, Ramamoorthy B (1972) On the flow-shop sequencing problem with no wait in process. Oper Res Quart 23(3):323–331CrossRefMATHGoogle Scholar
  11. Reisman A, Kumar A, Motwani J (1994) ‘Flowshop scheduling/sequencing research: A statistical review of the literature, 1952–1994’. IEEE Transact Eng Manag 44(3):316–329CrossRefGoogle Scholar
  12. Ruiz R, Maroto C (2005) A comprehensive review and evaluation of permutation flowshop heuristics. Eur J Oper Res 165(2):479–494CrossRefMATHMathSciNetGoogle Scholar
  13. Taillard E (1993) Benchmarks for basic scheduling problems. Eur J Oper Res 64(2):278–285CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag London Limited  2012

Authors and Affiliations

  • Joaquín Bautista
    • 1
  • Alberto Cano
    • 1
  • Ramon Companys
    • 2
  • Imma Ribas
    • 2
  1. 1.Nissan Chair, Universitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Departament D’Organització d’Empreses, ETSEIB, Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations