Advertisement

RF Aspects in Ultra-WideBand (UWB) Technology

  • Grzegorz Adamiuk
  • Jens Timmermann
  • Christophe Roblin
  • Wouter Dullaert
  • Philipp Gentner
  • Klaus Witrisal
  • Thomas Fügen
  • Ole Hirsch
  • Guowei Shen
Part of the Signals and Communication Technology book series (SCT)

Abstract

The chapter focuses on radio frequency aspects in UWB and is organised into four sections: the first section briefly summarises the main aspects about regulation issues of UWB technology; the second section describes antenna design and characterisation; the third section discusses UWB channel modelling and measurements; the last section describes localization and radar imagining with UWB technology.

Keywords

Orthogonal Frequency Division Multiplex Radiation Pattern Antenna Element Impulse Radio Maximal Power Spectral Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AAM09]
    A. Adalan, H. Arthaber, and C. Mecklenbräuker. On the potential of IEEE 802.15.4a for use in car safety and healthcare applications. In COST 2100 TD(09)865, Valencia, Spain, 18–19 May 2009. Google Scholar
  2. [AAMW10]
    D. Arnitz, G. Adamiuk, U. Muehlmann, and K. Witrisal. UWB channel sounding for ranging and positioning in passive UHF RFID. Aalborg, Denmark, June 2010. [TD(10)11085]. Google Scholar
  3. [AMW09]
    D. Arnitz, U. Muehlmann, and K. Witrisal. Multi-frequency continuous-wave radar approach to ranging in passive UHF RFID. IEEE Trans. Microwave Theory Tech., 57(5):1398–1405, 2009. CrossRefGoogle Scholar
  4. [APC+10]
    J. B. Andersen, G. F. Pedersen, K. L. Chee, M. Jacob, and T. Kürner. Room electromagnetics applied to an aircraft cabin with passengers. Aalborg, Denmark, June 2010. [TD(10)11001]. Google Scholar
  5. [APP+07]
    G. Adamiuk, E. Pancera, M. Porebska, C. Sturm, J. Timmermann, and W. Wiesbeck. Antennas for UWB-systems. In COST 2100 TD(07)358, Duisburg, Germany, 10–12 September 2007. Google Scholar
  6. [ASZW08]
    G. Adamiuk, C. Sturm, T. Zwick, and W. Wiesbeck. Dual polarized traveling wave antenna for ultra wideband radar application. In International Radar Symposium, IRS, pages 1–4, Wroclaw, Poland, May 2008. [Also available as TD(08)449]. CrossRefGoogle Scholar
  7. [AWZ09a]
    G. Adamiuk, W. Wiesbeck, and T. Zwick. Differential feeding as a concept for the realization of broadband dual-polarized antennas with very high polarization purity. In Antennas and Propagation Society International Symposium, 2009. APSURSI ’09. IEEE, pages 1–4, June 2009. [Also available as TD(09)850]. CrossRefGoogle Scholar
  8. [AWZ09b]
    G. Adamiuk, W. Wiesbeck, and T. Zwick. Multi-mode antenna feed for ultra wideband technology. In Radio and Wireless Symposium, 2009. RWS ’09. IEEE, pages 578–581, January 2009. [Also available as TD(08)662]. CrossRefGoogle Scholar
  9. [AZW08]
    G. Adamiuk, T. Zwick, and W. Wiesbeck. Dual-orthogonal polarized Vivaldi antenna for ultra wideband applications. In 17th International Conference on Microwaves, Radar and Wireless Communications, MIKON, pages 1–4, May 2008. [Also available as TD(08)449]. Google Scholar
  10. [Bau71]
    C. E. Baum. On the singularity expansion method for the solution of electromagnetic interaction problems. Interaction Notes, Note 88, December 1971. Google Scholar
  11. [Bau73]
    C. E. Baum. Singularity expansion of electromagnetic fields and potentials radiated from antennas or scattered from objects in free space. Sensor and Simulation Notes, Note 179, May 1973. Google Scholar
  12. [BKM+06]
    M. G. D. Benedetto, T. Kaiser, A. F. Molisch, I. Oppermann, C. Politano, and D. Porcino. UWB Communication Systems: A Comprehensive Overview. Hindawi Publishing Corporation, Cairo, Egypt, 2006. zbMATHCrossRefGoogle Scholar
  13. [CBB07]
    A. Czylwik, O. Bredtmann, and S. Bieder. Simulations and experimental results on the capacity of ultra-wideband radio channels, pages 316–321, Singapore, September 2007. [Also available as TD(07)390]. Google Scholar
  14. [CJK09]
    K. L. Chee, M. Jacob, and T. Kürner. A systematic approach for UWB channel modeling in aircraft cabins. In IEEE Vehicular Technology Conference VTC, September 2009. [Also available as TD(09)940]. Google Scholar
  15. [CMUB09]
    R. Cepeda, J. McGeehan, M. Umana, and M. Beach. Static and dynamic measurement of the UWB distance dependent path loss. In European Wireless Conference, 2009. EW 2009, pages 6–10, May 2009. [Also available as TD(09)714]. CrossRefGoogle Scholar
  16. [CPB07]
    R. Cepeda, S. C. J. Parker, and M. Beach. The measurement of frequency dependent path loss in residential LOS environments using time domain UWB channel sounding, Singapore, September 2007. [Also available as TD(07)306]. Google Scholar
  17. [CTB08]
    R. Cepeda, W. Thompson, and M. Beach. On the mathematical modelling and spatial distribution of UWB frequency dependency. In 2008 IET Seminar on Wideband and Ultrawideband Systems and Technologies: Evaluating Current Research and Development, pages 1–5, November 2008. [Also available as TD(08)456]. Google Scholar
  18. [CVT09]
    R. Cepeda, C. Vithanage, and W. Thompson. Analysis of diversity from dynamic channel measurements. Vienna, Austria, September 2009. [TD(09)921]. Google Scholar
  19. [CWS02]
    R. J.-M. Cramer, M. Z. Win, and R. A. Scholtz. Evaluation of an ultra-wide-band propagation channel. IEEE Trans. Antennas Propagat., 50(5):561–570, 2002. CrossRefGoogle Scholar
  20. [DAR10]
    W. Dullaert, G. Adamiuk, and H. Rogier. Compression of measured 2D UWB antenna transfer functions. Electronics Letters, 46(8):552, 2010. CrossRefGoogle Scholar
  21. [D’E08]
    R. D’Errico. Analysis and modeling of multiple antennas in ultra wideband. PhD thesis, Ecole Doctorale STITS, Université Paris Sud 11 and Università degli Studi di Bologna, Orsay, France, December 2008. [Ch. 2 and Ch. 4]. Google Scholar
  22. [DGRS06]
    R. D’Errico, H. Ghannoum, C. Roblin, and A. Sibille. Small semi directional antenna for UWB terminal applications. In EuCAP, Nice, France, November 2006. Google Scholar
  23. [DLG+09]
    M. Dashti, T. Laitinen, M. Ghoraishi, K. Haneda, J. i. Takada, and P. Vainikainen. Influence of antenna radiation pattern on accuracy of ToA estimation. In COST 2100 TD(09)942, Vienna, Austria, September 2009. Google Scholar
  24. [DR08]
    R. D’Errico and C. Roblin. Statistical analysis of UWB antenna radiation and scattering: applications and results. In COST 2100, Lille, France, October 2008. [TD(08)656]. Google Scholar
  25. [DR09]
    W. Dullart and H. Rogier. Compression of measured 2D UWB transfer functions. In COST 2100 TD(09)907, Vienna, Austria, September 2009. Google Scholar
  26. [DR10]
    W. Dullaert and H. Rogier. Novel compact model for the radiation pattern of UWB antennas using vector spherical and Slepian decomposition. IEEE Trans. Antennas Propagat., 58(2):287–299, 2010. MathSciNetCrossRefGoogle Scholar
  27. [DS07]
    R. D’Errico and A. Sibille. Scattering vs. coupling in UWB multiple antennas. In COST 2100, Lisbon, Portugal, February 2007. [TD(07)234]. Google Scholar
  28. [DS08]
    R. D’Errico and A. Sibille. Single and multiple scattering in UWB bicone arrays. International Journal of Antennas and Propagation, 2008. Guest Editors: James Becker, Dejan Filipovic, Hans Schantz, and Seong-Youp Suh. Google Scholar
  29. [Dul08]
    W. Dullaert. Compact 3D radiation pattern model for UWB antennas. In COST 2100 TD(08)518, Trondheim, Norway, June 2008. Google Scholar
  30. [DWL08]
    V. Dizdarevic, K. Witrisal, and R. Lobnik. Distance measurement tests using the emergency UWB radio positioning and communications EUROPCOM demonstrator. In COST 2100 TD(08)462, Wroclaw, Poland, February 2008. Google Scholar
  31. [ECC08]
    Electronic Communications Committee ECC. Decision of 1 December 2006 amended 31 October 2008 on supplementary regulatory provisions to decision ECC/DEC/(06)04 for UWB devices using mitigation techniques, 31 October 2008. Google Scholar
  32. [FCC02]
    Federal Communications Commission FCC. Revision of part 15 of the commission’s rule regarding ultra-wideband transmission systems, February 2002. Google Scholar
  33. [FH94]
    J. A. Fessler and A. O. Hero. Space-alternating generalized expectation-maximization algorithm. IEEE Trans. Signal Processing, 42(10):2664–2677, 1994. CrossRefGoogle Scholar
  34. [FTH+99]
    B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen. Channel parameter estimation in mobile radio environments using the SAGE algorithm. IEEE J. Select. Areas Commun., 17(3):434–450, 1999. CrossRefGoogle Scholar
  35. [GBG+09]
    T. Gigl, T. Buchgraber, B. Geiger, A. Adalan, J. Preishuber-Pfluegl, and K. Witrisal. Pathloss and delay spread analysis of multipath intensive environments using IEEE 802.15.4a UWB signals. Vienna, Austria, September 2009. [TD(09)965]. Google Scholar
  36. [GDB06]
    H. Ghannoum, R. D’Errico, and S. Bories. Small-size UWB planar antenna and its behaviour in WBAN/WPAN applications. In IEE Seminar on Ultra Wideband Systems, Technologies and Applications, London, UK, April 2006. Google Scholar
  37. [Gez08]
    S. Gezici. A survey on wireless position estimation. Wirel. Pers. Commun., 44(3):263–282, 2008. CrossRefGoogle Scholar
  38. [GGH+10]
    P. K. Gentner, W. Gartner, G. Hilton, M. A. Beach, and C. F. Mecklenbräuker. Towards a hardware implementation of ultra wideband beamforming. In 2010 International ITG Workshop on Smart Antennas (WSA), pages 408–413, December 2010. [Also available as TD(10)10034]. CrossRefGoogle Scholar
  39. [Gha06]
    H. Ghannoum. Etude conjointe antenne/canal pour les communications ultra large bande en présence du corps humain. PhD thesis, Ecole Doctorale d’Informatique, Télécommunications et Electronique de Paris, Paris, France, December 2006. [Ch. 3]. Google Scholar
  40. [GHBM10]
    P. K. Gentner, G. Hilton, M. A. Beach, and C. F. Mecklenbräuker. Near and farfield analysis of ultra wideband impulse radio beamforming in the time domain. In ICUWB, 2010. Google Scholar
  41. [GP09]
    S. Gezici and H. V. Poor. Position estimation via ultra-wide-band signals. Proceedings of the IEEE, 97(2):386–403, 2009. CrossRefGoogle Scholar
  42. [GZG+05]
    S. Gezici, T. Zhi, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Mag., 22(4):70–84, 2005. CrossRefGoogle Scholar
  43. [GZT08]
    S. Guowei, R. Zetik, and R. S. Thomä. Performance comparison of TOA and TDOA based location estimation algorithms in LOS environment. In 5th Workshop on Positioning, Navigation and Communication, 2008. WPNC 2008, pages 71–78, March 2008. CrossRefGoogle Scholar
  44. [Han88]
    J. E. Hansen. Spherical Near-Field Antenna Measurements. IEE Electromagnetic Waves Series, vol. 26. Peter Peregrinus, London, UK, 1988. CrossRefGoogle Scholar
  45. [HCR08]
    H. Hashemi, T. Chu, and J. Roderick. Integrated true-time-delay-based ultra-wideband array processing. IEEE Commun. Mag., 46(9):162–172, 2008. CrossRefGoogle Scholar
  46. [HiTiT+09]
    K. Haneda, K.-i. Takizawa, J.-i. Takada, M. Dashti, and P. Vainikainen. Performance evaluation of threshold-based UWB ranging methods. In Proc. European Conference on Antennas and Propagation (EuCAP), pages 3673–3677, March 2009. Google Scholar
  47. [HS90]
    Y. Hua and T. K. Sarkar. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. on Acoustics, Speech, and Signal Processing, 38(5):814–824, 1990. MathSciNetzbMATHCrossRefGoogle Scholar
  48. [HSZT10]
    O. Hirsch, G. Shen, R. Zetik, and R. S. Thomä. UWB radar imaging. In COST 2100 TD(10)10097, Athens, Greece, February 2010. Google Scholar
  49. [HT03]
    K. Haneda and J. I. Takada. An application of SAGE algorithm for UWB propagation channel estimation, pages 483–487, November 2003. Google Scholar
  50. [HTTV09]
    K. Haneda, J. I. Takada, K. I. Takizawa, and P. Vainikainen. Ultrawideband spatio-temporal area propagation measurements and modeling. In Proc. IEEE Interf. Conf. on UWB, pages 326–331, Vancouver, Canada, September 2009. [Also available as TD(09)955]. Google Scholar
  51. [HWM+10]
    K. Hausmair, K. Witrisal, P. Meissner, C. Steiner, and G. Kail. SAGE algorithm for UWB channel parameter estimation. Athens, Greece, February 2010. [TD(10)10074]. Google Scholar
  52. [JCC+05]
    J. Jung, W. Choi, J. Choi, P. Miskovsky, C. Ibars, J. Mateu, and M. Navarro. A small wideband microstrip-fed monopole antenna. IEEE Microwave Wireless Compon. Lett., 15(10):703–705, 2005. CrossRefGoogle Scholar
  53. [JFZW09]
    M. Janson, T. Fügen, T. Zwick, and W. Wiesbeck. Directional channel model for ultra-wideband indoor applications. In Proc. ICUWB 2009—IEEE International Conference on Ultra-Wideband, pages 235–239, Vancouver, Canada, September 2009. [Also available as TD(09)908]. CrossRefGoogle Scholar
  54. [JK07]
    J. Jemai and T. Kürner. Calibration of indoor channel models. In Proc. ITG/VDE, Osnabrueck, pages 31–36, Germany, May 2007. Google Scholar
  55. [JKS08]
    J. Jemai, T. Kürner, and I. Schmidt. UWB channel: from statistical aspects to calibration-based deterministic modeling. In Proc. German Microwave Conference (GeMiC), Hamburg-Harburg, Germany, 2008. Google Scholar
  56. [JLS+09]
    M. Jacob, C. K. Lien, I. Schmidt, J. Schuur, W. Fischer, M. Schirrmacher, and T. Kürner. Influence of passengers on the UWB propagation channel within a large wide-bodied aircraft. In 3rd European Conference on Antennas and Propagation, 2009. EuCAP 2009, pages 882–886, March 2009. [Also available as TD(09)748]. Google Scholar
  57. [JPZW10]
    M. Janson, J. Pontes, T. Zwick, and W. Wiesbeck. Directional hybrid channel model for ultra-wideband MIMO systems. In Proc. of the European Conference on Antennas and Propagation EuCAP, Barcelona, Barcelona, Spain, April 2010. [Also available as TD(10)11021]. Google Scholar
  58. [JSS+09]
    M. Janson, R. Salman, T. Schultze, I. Willms, T. Zwick, and W. Wiesbeck. Hybrid ray tracing/FDTD UWB-model for object recognition. Frequenz, Journal of RF-Engineering and Telecommunications, 63:220–271, 2009. [Also available as TD(07)337]. Google Scholar
  59. [JTM+08]
    L. Jofre, A. Toda, J. Montana, P. Carrascosa, J. Romeu, S. Blanch, and A. Cardama. UWB short-range bifocusing tomographic imaging. IEEE Transactions on Instrumentation and Measurement, 57(11):2414–2420, 2008. CrossRefGoogle Scholar
  60. [KP02]
    J. Kunisch and J. Pamp. Measurement results and modeling aspects for the UWB radio channel, pages 19–23, Baltimore, MD, May 2002. Measurements available under http://www.imst.de/de/funk_wel_dow.php.
  61. [KP03]
    J. Kunisch and J. Pamp. An ultra-wideband space-variant multipath indoor radio channel model. Reston, VA, November 2003. Google Scholar
  62. [Li09]
    Y. Li. Abbildung von Objekten mit UWB-Radarsensoren (“Fledermaus”-Sensor). Master’s thesis, Technische Universität Ilmenau, 2009. Google Scholar
  63. [LJACH09]
    X. Li, M. Janson, G. Adamiuk, T. Zwick, and C. Heine. A 2D ultra-wideband indoor imaging system with dual-orthogonal polarized antenna array. In COST 2100 TD(09)9101, Vienna, Austria, September 2009. Google Scholar
  64. [MGPLND08]
    J.-M. Molina-Garcia-Pardo, M. Lienard, A. Nasr, and P. Degauque. Wideband analysis of large scale and small scale fading in tunnels. In 8th International Conference on ITS Telecommunications, 2008. ITST 2008, pages 270–273, October 2008. [Also available as TD(08)608]. CrossRefGoogle Scholar
  65. [Mol09]
    A. F. Molisch. Ultra-wide-band propagation channels. Proceedings of the IEEE, 97(2):353–371, 2009. CrossRefGoogle Scholar
  66. [MSW10]
    P. Meissner, C. Steiner, and K. Witrisal. UWB positioning with virtual anchors and floor plan information. Dresden, Germany, March 2010. Google Scholar
  67. [NC07]
    K. M. Nasr and J. Cosmas. A hybrid channel model for ultra wideband (UWB) applications. Duisburg, Germany, September 2007. [TD(07)314]. Google Scholar
  68. [RBS03]
    C. Roblin, S. Bories, and A. Sibille. Characterization tools of antennas in the time domain. In IWUWBS, Oulu, Finland, June 2003. Google Scholar
  69. [RD08]
    C. Roblin and R. D’Errico. Statistical analysis of UWB antenna radiation and scattering: theory and modelling. In COST 2100, Lille, France, October 2008. [TD(08)657]. Google Scholar
  70. [RD09]
    C. Roblin and R. D’Ericco. Statistical analysis of a parametric model of a “population” of UWB antennas. In 3rd European Conference on Antennas and Propagation, EuCAP, March 2009. Google Scholar
  71. [RK05]
    S. Ries and T. Kaiser. Highlights of UWB impulse beamforming. In EUSIPCO 13, September 2005. Google Scholar
  72. [Rob06]
    C. Roblin. Ultra compressed parametric modelling of UWB antenna measurements. In 2006 First European Conference on Antennas and Propagation, pages 1–8. IEEE Press, New York, 2006. CrossRefGoogle Scholar
  73. [Rob07]
    C. Roblin. Analysis of the parameters of a model-based parsimonious representation of UWB antenna radiation characteristics. In COST 2100 TD(07)375, Duisburg, Germany, September 2007. Google Scholar
  74. [Rob08]
    C. Roblin. Ultra compressed parametric modeling for symmetric or pseudo-symmetric UWB antennas. In ICUWB, Hannover, Germany, September 2008. Google Scholar
  75. [Rog06]
    H. Rogier. Spatial correlation in uniform circular arrays based on a spherical-waves model for mutual coupling. AEU—International Journal of Electronics and Communications, 60(7):521–532, 2006. Google Scholar
  76. [RRSS08]
    M. Rydström, L. Reggiani, E. G. Ström, and A. Svensson. An algorithm for locating point scatterers using a wide-band wireless network. In COST 2100 TD(08)420, Wroclaw, Poland, February 2008. Google Scholar
  77. [SGG08]
    Z. Sahinoglu, S. Gezici, and I. Guvenc. Ultra-wideband Positioning Systems: Theoretical Limits, Ranging Algorithms, and Protocols. Cambridge University Press, New York, US, 2008. CrossRefGoogle Scholar
  78. [SGS+09]
    M. Schack, R. Geise, I. Schmidt, R. Piesiewicz, and T. Kürner. UWB channel measurements inside different car types. In 3rd European Conference on Antennas and Propagation, 2009. EuCAP 2009, pages 640–644, March 2009. [Also available as TD(09)761]. Google Scholar
  79. [SHER06]
    H. Saghir, M. Heddebaut, F. Elbahhar, and J. M. Rouvaen. Evaluation of a tunnel ground to train UWB communication, pages 1–5, September 2006. Google Scholar
  80. [SJK10]
    M. Schack, M. Jacob, and T. Kürner. Comparison of in-car UWB and 60 GHz channel measurements. In 2010 Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), April, pages 1–5, 2010. [Also available as TD(10)11037]. Google Scholar
  81. [SJP+08]
    M. Schack, J. Jemai, R. Piesiewicz, R. Geise, I. Schmidt, and T. Kürner. Measurements and analysis of an in-car UWB channel. In Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE, pages 459–463, May 2008. [Also available as TD(08)455]. CrossRefGoogle Scholar
  82. [SKA+08]
    T. Santos, J. Karedal, P. Almers, F. Tufvesson, and A. F. Molisch. Scatterer detection by successive cancellation for UWB—method and experimental verification. In Vehicular Technology Conference VTC Spring, pages 445–449, May 2008. [Also available as TD(08)411]. CrossRefGoogle Scholar
  83. [Sle78]
    D. Slepian. Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V. The discrete case. Bell Systems Technology Journal, 57:1371–1430, 1978. zbMATHGoogle Scholar
  84. [SP61]
    D. Slepian and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis, and uncertainty. I. Bell Systems Technology Journal, 40(1):43–64, 1961. MathSciNetzbMATHGoogle Scholar
  85. [SP95]
    T. K. Sarkar and O. Pereira. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas Propagat. Mag., 37(1):48–55, 1995. CrossRefGoogle Scholar
  86. [SPKR00]
    T. K. Sarkar, S. Park, J. Koh, and M. S. Rao. Application of the matrix pencil method for estimating the SEM poles of source-free transient responses from multiple look directions. IEEE Trans. Antennas Propagat., 48(4):612–618, 2000. CrossRefGoogle Scholar
  87. [SV87]
    A. Saleh and R. Valenzuela. A statistical model for indoor multipath propagation. IEEE J. Select. Areas Commun., 5:128–137, 1987. CrossRefGoogle Scholar
  88. [SZHT09]
    G. Shen, R. Zetik, O. Hirsch, and R. S. Thomä. Range based localization under NLOS conditions within UWB sensor networks. In COST 2100 TD(09)708, Braunschweig, Germany, February 2009. Google Scholar
  89. [SZHT10]
    G. Shen, R. Zetik, O. Hirsch, and R. S. Thomä. Range-based localization for UWB sensor networks in realistic environments. EURASIP J. Wirel. Commun. Netw., 2010:1, 2010. CrossRefGoogle Scholar
  90. [SZT08]
    G. Shen, R. Zetik, and R. S. Thomä. Performance evaluation of range-based location estimation algorithms under LOS situation. In Proc. of the German Microwave Conference (GeMiC’08), Hamburg, Germany, 2008. Google Scholar
  91. [TCAB09]
    W. Thompson, R. Cepeda, S. Armour, and M. Beach. Frequency dependency of capacity in MIMO UWB LOS and NLOS environments. Vienna, Austria, September 2009. [TD(09)977]. Google Scholar
  92. [THSZ07]
    R. S. Thoma, O. Hirsch, J. Sachs, and R. Zetik. UWB sensor networks for position location and imaging of objects and environments. In The Second European Conference on Antennas and Propagation, 2007. EuCAP 2007, pages 1–9, November 2007. Google Scholar
  93. [WA07]
    W. Wiesbeck and G. Adamiuk. Antennas for UWB-systems. In 2nd International ITG Conference on Antennas, 2007. INICA ’07, pages 67–71, March 2007. CrossRefGoogle Scholar
  94. [WAS09]
    W. Wiesbeck, G. Adamiuk, and C. Sturm. Basic properties and design principles of UWB antennas. Proceedings of the IEEE, 97(2):372–385, 2009. CrossRefGoogle Scholar
  95. [Wit07]
    K. Witrisal. UWB channel characterization for system studies. In COST 2100, Duisburg, Germany, September 2007. [TD(07)378]. Google Scholar
  96. [WLJ+09]
    K. Witrisal, G. Leus, G. J. M. Janssen, M. Pausini, F. Troesch, T. Zasowski, and J. Romme. Noncoherent ultra-wideband systems. IEEE Signal Processing Mag., 26(4):48–66, 2009. CrossRefGoogle Scholar
  97. [WP08]
    K. Witrisal and M. Pausini. Statistical analysis of UWB channel correlation functions. IEEE Trans. Veh. Technol., 57(3):1359–1373, 2008. CrossRefGoogle Scholar
  98. [WS05]
    W. Wiesbeck, W. Soergel, and C. Sturm. Impulse responses of linear UWB antenna arrays and the application to beam steering. In ICUWB, September 2005. Google Scholar
  99. [ZST05]
    R. Zetik, J. Sachs, and R. Thomae. Imaging of propagation environment by UWB channel sounding, January 2005. [TD(05)058]. Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Grzegorz Adamiuk
    • 1
  • Jens Timmermann
    • 1
  • Christophe Roblin
    • 2
  • Wouter Dullaert
    • 3
  • Philipp Gentner
    • 4
  • Klaus Witrisal
    • 5
  • Thomas Fügen
    • 1
  • Ole Hirsch
    • 6
  • Guowei Shen
    • 6
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.ENSTA Paris-TechParisFrance
  3. 3.Ghent UniversityGhentBelgium
  4. 4.Vienna University of TechnologyViennaAustria
  5. 5.Graz University of TechnologyGrazAustria
  6. 6.Ilmenau University of TechnologyIlmenauGermany

Personalised recommendations