Conquering Complexity via Seamless Integration of Design-Time and Run-Time Verification

  • Antonio Filieri
  • Carlo Ghezzi
  • Raffaela Mirandola
  • Giordano Tamburrelli


The complexity of modern software systems has grown enormously in the past years with users always demanding for new features and better quality of service. Software applications evolved not only in terms of size, but also in the criticality of the services supported. At the same time, software artifacts changed from being monolithic and centralized to modular, distributed, and dynamic. Systems are now composed of heterogeneous components and infrastructures on which software is configured and deployed. Interactions with the external environment and the structure of the application, in terms of components and interconnections, are often required to change dynamically. All these causes challenge our ability to achieve acceptable levels of dependability. To guarantee system dependability, it is necessary to combine off-line (development-time) analysis techniques with run-time mechanisms for continuous verification. Off-line verification checks the correct behavior of the various components of the application under given assumptions on the embedding environment. But because verification can be incomplete, the assumptions about reality it relies upon are subject to uncertainty and variability and, in addition, the various parts of a complex system may evolve independently, it is necessary to extend verification to also cope with the runtime behavior of software. This paper motivates the need for continuous verification to guarantee dependability and shows how this goal may be tackled. In particular, it focuses attention on two important dependability attributes: reliability and performance.


Model Checker Service Center Service Composition Composite Service Average Response Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been partially funded by the European Commission, Programme IDEAS-ERC, Project 227977-SMScom.


  1. 1.
    Alves, A., Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Sterling, König, D., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., Yiu, A.: Web services business process execution language version 2.0. OASIS Committee Draft (2006) Google Scholar
  2. 2.
    Ardagna, D., Ghezzi, C., Mirandola, R.: Rethinking the use of models in software architecture. In: 4th International Conference on the Quality of Software-Architectures, QoSA 2008. LNCS, vol. 5281, pp. 1–27. Springer, Berlin (2008) Google Scholar
  3. 3.
    Ardagna, D., Mirandola, R.: Per-flow optimal service selection for web services based processes. J. Syst. Softw. 83(8), 1512–1523 (2010) CrossRefGoogle Scholar
  4. 4.
    Aziz, A., Singhal, V., Balarin, F.: It usually works: the temporal logic of stochastic systems. In: Wolper, P. (ed.) Proc. 7th International Conference on Computer Aided Verification, CAV 95. LNCS, vol. 939, pp. 155–165. Springer, Berlin (1995) Google Scholar
  5. 5.
    Baier, C., Katoen, J.-P., Hermanns, H.: Approximate symbolic model checking of continuous-time Markov chains. In: Baeten, J.C.M., Mauw, S. (eds.) Proc. 10th International Conference on Concurrency Theory, CONCUR 99. LNCS, vol. 1664, pp. 146–161. Springer, Berlin (1999) Google Scholar
  6. 6.
    Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–310 (2004) CrossRefGoogle Scholar
  7. 7.
    Baresi, L., Bianculli, D., Ghezzi, C., Guinea, S., Spoletini, P.: Validation of web service compositions. IET Softw. 1(6), 219–232 (2007) CrossRefGoogle Scholar
  8. 8.
    Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: issue and challenges. Computer 39(10), 36–43 (2006) CrossRefGoogle Scholar
  9. 9.
    Baresi, L., Ghezzi, C., Guinea, S.: Smart monitors for composed services. In: Proceedings of the 2nd International Conference on Service Oriented Computing, ICSOC ’04, pp. 193–202. ACM, New York (2004) CrossRefGoogle Scholar
  10. 10.
    Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks of queues with different classes of customers. J. ACM 22(2), 248–260 (1975) CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Becker, S., Grunske, L., Mirandola, R., Overhage, S.: Performance prediction of component-based systems—a survey from an engineering perspective. In: Architecting Systems with Trustworthy Components. LNCS, vol. 3938, pp. 169–192. Springer, Berlin (2006) CrossRefGoogle Scholar
  12. 12.
    Becker, S., Koziolek, H., Reussner, R.: Model-based performance prediction with the Palladio component model. In: WOSP ’07: Proceedings of the 6th International Workshop on Software and Performance, pp. 54–65. ACM, New York (2007) CrossRefGoogle Scholar
  13. 13.
    Bernardi, S., Merseguer, J., Petriu, D.: Adding dependability analysis capabilities to the MARTE profile. In: Model Driven Engineering Languages and Systems, Proceedings 11th International Conference, MoDELS 2008, Toulouse, France, September 28–October 3, 2008. LNCS, vol. 5301, pp. 736–750. Springer, Berlin (2008) CrossRefGoogle Scholar
  14. 14.
    Bertoli, M., Casale, G., Serazzi, G.: The JMT simulator for performance evaluation of non-product-form queueing networks. In: Annual Simulation Symposium, pp. 3–10. IEEE Computer Society, Norfolk (2007) Google Scholar
  15. 15.
    Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. Wiley-Interscience, New York (1998) CrossRefzbMATHGoogle Scholar
  16. 16.
    Brooks, F.P.: The Mythical Man-Month: Essays on Software Engineering. Pearson Education, London (1975) Google Scholar
  17. 17.
    Calinescu, R.: General-purpose autonomic computing. In: Denko, M.K., Yang, L.T., Zhang, Y. (eds.) Autonomic Computing and Networking, pp. 3–30. Springer, Berlin (2009) CrossRefGoogle Scholar
  18. 18.
    Calinescu, R., Kwiatkowska, M.: Using quantitative analysis to implement autonomic it systems. In: ICSE ’09: Proceedings of the 31st International Conference on Software Engineering, pp. 100–110. IEEE Computer Society, Washington (2009) Google Scholar
  19. 19.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for QoS-aware binding and re-binding of composite web services. J. Syst. Softw. 81(10), 1754–1769 (2008) CrossRefGoogle Scholar
  20. 20.
    Caporuscio, M., Funaro, M., Ghezzi, C.: Architectural issues of adaptive pervasive systems. In: Graph Transformations and Model-Driven Engineering, pp. 492–511 (2010) CrossRefGoogle Scholar
  21. 21.
    Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: QoS-driven runtime adaptation of service oriented architectures. In: Proceedings ESEC/FSE 2009, pp. 131–140. ACM, New York (2009) CrossRefGoogle Scholar
  22. 22.
    Casale, G., Muntz, R., Serazzi, G.: Geometric bounds: a noniterative analysis technique for closed queueing networks. IEEE Trans. Comput. 57(6), 780–794 (2008) CrossRefMathSciNetGoogle Scholar
  23. 23.
    Cavallaro, L., Di Nitto, E., Pelliccione, P., Pradella, M., Tivoli, M.: Synthesizing adapters for conversational web-services from their WSDL interface. In: ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’10, pp. 104–113. ACM, New York (2010) Google Scholar
  24. 24.
    Chafle, G., Doshi, P., Harney, J., Mittal, S., Srivastava, B.: Improved adaptation of web service compositions using value of changed information. In: ICWS, pp. 784–791. IEEE Comput. Soc., Los Alamitos (2007) Google Scholar
  25. 25.
    Cheng, B., de Lemos, R., Giese, G., Inverardi, P., Magee, J. (eds.): Software Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar]. LNCS, vol. 5525. Springer, Berlin (2009) Google Scholar
  26. 26.
    Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic process algebras. In: 7th Intern. School on Formal Methods, SFM. LNCS, vol. 4486, pp. 132–179. Springer, Berlin (2007) Google Scholar
  27. 27.
    Di Nitto, E., Ghezzi, C., Metzger, A., Papazoglou, M.P., Pohl, K.: A journey to highly dynamic, self-adaptive service-based applications. Autom. Softw. Eng. 15(3–4), 313–341 (2008) CrossRefGoogle Scholar
  28. 28.
    Dwyer, M.B., Avrunin, J.S., Corbett, J.C.: Property specification patterns for finite-state verification. In: Proc. 21th International Conference on Software Engineering (ICSE99), pp. 411–420. ACM, New York (1999) Google Scholar
  29. 29.
    Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time parameter adaptation. In: Proc. 31st International Conference on Software Engineering (ICSE09), pp. 111–121. IEEE Comput. Soc., Los Alamitos (2009) Google Scholar
  30. 30.
    Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model checking. In: Taylor, R.N., Gall, H., Medvidovic, N. (eds.) ICSE, pp. 341–350 (2011) Google Scholar
  31. 31.
    Gallotti, S., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Quality prediction of service compositions through probabilistic model checking. In: QoSA, Quality of Software Architecture. LNCS. Springer, Berlin (2008) Google Scholar
  32. 32.
    Garlan, D., Cheng, S.-W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: architecture-based self-adaptation with reusable infrastructure. IEEE Comput. 37(10), 46–54 (2004) CrossRefGoogle Scholar
  33. 33.
    Ghezzi, C., Guinea, S.: Run-time monitoring in service-oriented architectures. In: Test and Analysis of Web Services, pp. 237–264. Springer, Berlin (2007) CrossRefGoogle Scholar
  34. 34.
    Ghezzi, C., Motta, A., Manna, V.P.L., Tamburrelli, G.: QoS driven dynamic binding in-the-many. In: Heineman, G.T., Kofron, J., Plasil, F. (eds.) Research into Practice—Reality and Gaps, 6th International Conference on the Quality of Software Architectures, QoSA 2010, Prague, Czech Republic, June 23–25, 2010, pp. 68–83. Springer, Berlin (2010) Google Scholar
  35. 35.
    Ghezzi, C., Tamburrelli, G.: Reasoning on non-functional requirements for integrated services. In: RE ’09: Proceedings of the 17th International Conference on Requirements Engineering, Atlanta, USA (2009) Google Scholar
  36. 36.
    Grassi, V.: Architecture-based reliability prediction for service-oriented computing. In: Workshop on Architecting Dependable Systems, WADS. LNCS, vol. 3549, pp. 279–299. Springer, Berlin (2004) CrossRefGoogle Scholar
  37. 37.
    Gruhn, V., Laue, R.: Patterns for timed property specifications. Electron. Notes Theor. Comput. Sci. 153(2), 117–133 (2006) CrossRefGoogle Scholar
  38. 38.
    Grunske, L.: Specification patterns for probabilistic quality properties. In: Robbie (ed.) 30th International Conference on Software Engineering (ICSE 2008), pp. 31–40. ACM, New York (2008) Google Scholar
  39. 39.
    Guo, H., Huai, J., Li, H., Deng, T., Li, Y., Du, Z.: ANGEL: optimal configuration for high available service composition. In: IEEE International Conference on Web Services (ICWS 2007), pp. 280–287. IEEE Comput. Soc., Los Alamitos (2007) CrossRefGoogle Scholar
  40. 40.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Form. Asp. Comput. 6(5), 512–535 (1994) CrossRefzbMATHGoogle Scholar
  41. 41.
    Harney, J., Doshi, P.: Speeding up adaptation of web service compositions using expiration times. In: World Wide Web (WWW), pp. 1023–1032. ACM, New York (2007) Google Scholar
  42. 42.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: Prism: a tool for automatic verification of probabilistic systems. In: Proc. 12th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’06), vol. 3920, pp. 441–444 (2006) CrossRefGoogle Scholar
  43. 43.
    Immonen, A., Niemelä, E.: Survey of reliability and availability prediction methods from the viewpoint of software architecture. Softw. Syst. Model. 7(1), 49–65 (2008) CrossRefGoogle Scholar
  44. 44.
    Jain, R.: The Art of Computer Systems Performance Analysis—Techniques for Experimental Design, Measurement, Simulation, and Modeling. Wiley-Interscience, New York (1991) zbMATHGoogle Scholar
  45. 45.
    Katoen, J.-P., Kemna, T., Zapreev, I.S., Jansen, D.N.: Bisimulation minimisation mostly speeds up probabilistic model checking. In: Grumberg, O., Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems TACAS 2007, Proceedings. LNCS, vol. 4424, pp. 87–101. Springer, Berlin (2007) CrossRefGoogle Scholar
  46. 46.
    Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: QEST, pp. 243–244. IEEE Comput. Soc., Los Alamitos (2005) Google Scholar
  47. 47.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comput. 36(1), 41–50 (2003) CrossRefGoogle Scholar
  48. 48.
    Kerola, T.: The composite bound method for computing throughput bounds in multiple class environments. Perform. Eval. 6(1), 1–9 (1986) CrossRefMathSciNetGoogle Scholar
  49. 49.
    Konrad, S., Cheng, B.: Real-time specification patterns. In: Roman, G.-C., Griswold, W.G., Nuseibeh, B. (eds.) 27th International Conference on Software Engineering (ICSE 05), pp. 372–381. ACM, New York (2005) CrossRefGoogle Scholar
  50. 50.
    Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change management. IEEE Trans. Softw. Eng. 16, 1293–1306 (1990) CrossRefGoogle Scholar
  51. 51.
    Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In: 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), pp. 449–458. ACM Press, New York (2007) CrossRefGoogle Scholar
  52. 52.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Probabilistic symbolic model checking with PRISM: a hybrid approach. Int. J. Softw. Tools Technol. Transf. 6(2), 128–142 (2004) CrossRefGoogle Scholar
  53. 53.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: Symmetry reduction for probabilistic model checking. In: Ball, T., Jones, R.B. (eds.) Computer Aided Verification, Proceedings 18th International Conference, CAV 2006. LNCS, vol. 4144, pp. 234–248. Springer, Berlin (2006) Google Scholar
  54. 54.
    Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Form. Methods Syst. Des. 29(1), 33–78 (2006) CrossRefzbMATHGoogle Scholar
  55. 55.
    Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System Performance: Computer System Analysis Using Queueig Network Models. Prentice Hall, New York (1984) Google Scholar
  56. 56.
    Maoz, S.: Using model-based traces as runtime models. IEEE Comput. 42(10), 28–36 (2009) CrossRefGoogle Scholar
  57. 57.
    Marsan, M.A.: Stochastic petri nets: an elementary introduction. In: Advances in Petri Nets, pp. 1–29. Springer, Berlin (1989) Google Scholar
  58. 58.
    Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software architecture models for performance, reliability, and cost using evolutionary algorithms. In: 1st Joint WOSP/SIPEW International Conference on Performance Engineering, pp. 105–116. ACM, New York (2010) CrossRefGoogle Scholar
  59. 59.
    Marzolla, M., Mirandola, R.: Performance aware reconfiguration of software systems. In: Computer Performance Engineering—Proceedings 7th European Performance Engineering Workshop, EPEW 2010, Bertinoro, Italy, September 23–24, 2010. LNCS, vol. 6342, pp. 51–66. Springer, Berlin (2010) Google Scholar
  60. 60.
    Menascé, D.A., Ewing, J.M., Gomaa, H., Malek, S., Sousa, J.P.: A framework for utility-based service oriented design in sassy. In: Proc. First Joint WOSP/SIPEW Int. Conf. on Performance Engineering, pp. 27–36. ACM, New York (2010) CrossRefGoogle Scholar
  61. 61.
    Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., Solberg, A.: Models@ run.time to support dynamic adaptation. IEEE Comput. 42(10), 44–51 (2009) CrossRefGoogle Scholar
  62. 62.
    Puterman, M.L.: Markov Decision Processes. Wiley, New York (1994) CrossRefzbMATHGoogle Scholar
  63. 63.
    Raimondi, F., Skene, J., Emmerich, W.: Efficient online monitoring of web-service slas. In: SIGSOFT FSE, pp. 170–180. ACM, New York (2008) Google Scholar
  64. 64.
    Ross, S.M.: Stochastic Processes. Wiley, New York (1996) zbMATHGoogle Scholar
  65. 65.
    Salehie, M., Li, S., Asadollahi, R., Tahvildari, L.: Change support in adaptive software: a case study for fine-grained adaptation. In: EASE ’09: Proc. Sixth IEEE Conf. and Workshops on Engineering of Autonomic and Autonomous Systems, pp. 35–44. IEEE Comput. Soc., Washington (2009) CrossRefGoogle Scholar
  66. 66.
    Sato, N., Trivedi, K.S.: Stochastic modeling of composite web services for closed-form analysis of their performance and reliability bottlenecks. In: ICSOC. LNCS, vol. 4749, pp. 107–118. Springer, Berlin (2007) Google Scholar
  67. 67.
    Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic systems. In: Etessami, K., Rajamani, S.K. (eds.) Computer Aided Verification. LNCS, vol. 3576, pp. 266–280. Springer, Berlin (2005) CrossRefGoogle Scholar
  68. 68.
    Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural styles for runtime software adaptation. In: WICSA/ECSA, pp. 171–180. IEEE Press, New York (2009) Google Scholar
  69. 69.
    Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: a low disruptive alternative to quiescence for ensuring safe dynamic updates. IEEE Trans. Softw. Eng. 33(12), 856–868 (2007) CrossRefGoogle Scholar
  70. 70.
    Wang, L., Dingle, N.J., Knottenbelt, W.J.: Natural language specification of performance trees. In: Thomas, N., Juiz, C. (eds.) Proceedings of the 5th European Performance Engineering Workshop, EPEW 2008. LNCS, vol. 5261, pp. 141–151 (2008) Google Scholar
  71. 71.
    WOSP International Workshops on Software and Performance. ACM, New York (1998–2008) Google Scholar
  72. 72.
    Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for web services composition. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004) CrossRefGoogle Scholar
  73. 73.
    Zheng, T., Woodside, M., Litoiu, M.: Performance model estimation and tracking using optimal filters. IEEE Trans. Softw. Eng. 34(3), 391–406 (2008) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Antonio Filieri
    • 1
  • Carlo Ghezzi
    • 1
  • Raffaela Mirandola
    • 1
  • Giordano Tamburrelli
    • 1
  1. 1.DeepSE Group @ DEIPolitecnico di MilanoMilanItaly

Personalised recommendations