Advertisement

Robot-Aided Gait Training with LOPES

  • Edwin H. F. van AsseldonkEmail author
  • Herman van der Kooij
Chapter

Abstract

Robot-aided gait training in stroke survivors and spinal cord injury patients has shown inconclusive effects on walking ability. It is widely acknowledged that the control and design of the robotic devices needs to be further optimized to be able to provide training that fits better into modern insights in neural plasticity, motor learning, and motor recovery and in doing so improves its effectiveness. We will go more deeply into the need and scientific background for improvements on active participation, task specificity, and the facilitation of different recovery mechanisms. Subsequently, we will discuss recent advances that have been made in the control and design of robotic devices to improve on these aspects. Hereby, we will focus on the robotic gait training device LOPES that has been developed within our group. We will discuss how its design and control approach should contribute to improvements on all of the aforementioned aspects. The feasibility of the chosen approach is demonstrated by experimental results in healthy subjects and chronic stroke survivors. Future clinical testing has to demonstrate whether the outcome of robot-aided gait training can indeed be improved by increasing its task specificity, by the active contribution of the patient, and by allowing different movement strategies.

Keywords

Impedance-controlled exoskeleton Assist-as-needed Recovery and compensation Task specific Stroke Spinal cord injury 

References

  1. 1.
    Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait. J Rehabil Res Dev. 2000;37(6):701–8.PubMedGoogle Scholar
  2. 2.
    Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev. 2000;37(6):693–700.PubMedGoogle Scholar
  3. 3.
    Banala SK, Kim SH, Agrawal SK, Scholz JP. Robot assisted gait training with active leg exoskeleton (ALEX). IEEE Trans Neural Syst Rehabil Eng. 2009;17(1):2–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Aoyagi D, Ichinose WE, Harkema SJ, Reinkensmeyer DJ, Bobrow JE. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):387–400.PubMedCrossRefGoogle Scholar
  5. 5.
    Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Van Asseldonk EHF, Van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Kazerooni H, Steger R. The Berkeley lower extremity exoskeleton. J Dyn Sys Meas Control Trans ASME. 2006;128(1):14–25.CrossRefGoogle Scholar
  7. 7.
    Kawamoto H, Sankai Y. Power assist system hal-3 for gait disorder person. In: International conference on computers for handicapped persons. Linz; 2002. p. 196–203.Google Scholar
  8. 8.
    Husemann B, Muller F, Krewer C, Heller S, Koenig E. Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: a randomized controlled pilot study. Stroke. 2007;38(2):349–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Mayr A, Kofler M, Quirbach E, Matzak H, Frohlich K, Saltuari L. Prospective, blinded, randomized crossover study of gait rehabilitation in stroke patients using the Lokomat gait orthosis. Neurorehabil Neural Repair. 2007;21(4):307–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Pohl M, Werner C, Holzgraefe M, et al. Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living after stroke: a single-blind, randomized multicentre trial (DEutsche GAngtrainerStudie, DEGAS). Clin Rehabil. 2007;21(1):17–27.PubMedCrossRefGoogle Scholar
  11. 11.
    Hornby TG, Campbell DD, Kahn JH, Demott T, Moore JL, Roth HR. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study. Stroke. 2008;39(6):1786–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Hidler J, Nichols D, Pelliccio M, et al. Multicenter randomized clinical trial evaluating the effectiveness of the lokomat in subacute stroke. Neurorehabil Neural Repair. 2009;23(1):5–13.PubMedGoogle Scholar
  13. 13.
    Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clin Rehabil. 2004;18(8):833–62.PubMedCrossRefGoogle Scholar
  14. 14.
    Bayona NA, Bitensky J, Salter K, Teasell R. The role of task-specific training in rehabilitation therapies. Top Stroke Rehabil. 2005;12(3):58–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Neckel ND, Blonien N, Nichols D, Hidler J. Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern. J Neuroeng Rehabil. 2008;5(1):19.PubMedCrossRefGoogle Scholar
  16. 16.
    Kollen B, van de Port I, Lindeman E, Twisk J, Kwakkel G. Predicting improvement in gait after stroke: a longitudinal prospective study. Stroke. 2005;36(12):2676–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313–9.PubMedGoogle Scholar
  18. 18.
    Kim CM, Eng JJ. Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed. Gait Posture. 2004;20(2):140–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. Stroke. 2006;37(3):872–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Buurke JH, Nene AV, Kwakkel G, Erren-Wolters V, Ijzerman MJ, Hermens HJ. Recovery of gait after stroke: what changes? Neurorehabil Neural Repair. 2008;22(6):676–83.PubMedCrossRefGoogle Scholar
  21. 21.
    Jonsdottir J, Cattaneo D, Recalcati M, et al. Task-oriented biofeedback to improve gait in individuals with chronic stroke: motor learning approach. Neurorehabil Neural Repair. 2010;24(5):478–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Van de Crommert HW, Mulder T, Duysens J. Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture. 1998;7(3):251–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Miyai I, Tanabe HC, Sase I, et al. Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage. 2001;14(5):1186–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Miyai I, Yagura H, Hatakenaka M, Oda I, Konishi I, Kubota K. Longitudinal optical imaging study for locomotor recovery after stroke. Stroke. 2003;34(12):2866–70.PubMedCrossRefGoogle Scholar
  25. 25.
    Enzinger C, Dawes H, Johansen-Berg H, et al. Brain activity changes associated with treadmill training after stroke. Stroke. 2009;40(7):2460–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Luft AR, Macko RF, Forrester LW, et al. Treadmill exercise activates subcortical neural networks and improves walking after stroke: a randomized controlled trial. Stroke. 2008;39(12):3341–50.PubMedCrossRefGoogle Scholar
  27. 27.
    Thomas SL, Gorassini MA. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J Neurophysiol. 2005;94(4):2844–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003;126(Pt 4):866–72.PubMedCrossRefGoogle Scholar
  29. 29.
    Perez MA, Lungholt BK, Nyborg K, Nielsen JB. Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res. 2004;159(2):197–205.PubMedCrossRefGoogle Scholar
  30. 30.
    van Asseldonk EH, Wessels M, Stienen AH, van der Helm FC, van der Kooij H. Influence of haptic guidance in learning a novel visuomotor task. J Physiol Paris. 2009;103(3–5):276–85.PubMedCrossRefGoogle Scholar
  31. 31.
    Hof AL. The ‘extrapolated center of mass’ concept suggests a simple control of balance in walking. Hum Mov Sci. 2008;27(1):112–25.PubMedCrossRefGoogle Scholar
  32. 32.
    Van der Kooij H, Jacobs R, Koopman B, Van der Helm F. An alternative approach to synthesizing bipedal walking. Biol Cybern. 2003;88(1):46–59.PubMedCrossRefGoogle Scholar
  33. 33.
    Veneman JF, Menger J, Van Asseldonk EHF, Van der Helm FCT, Van der Kooij H. Fixating the pelvis in the horizontal plane affects gait characteristics. Gait Posture. 2008;28(1):157–63.PubMedCrossRefGoogle Scholar
  34. 34.
    Bauby CE, Kuo AD. Active control of lateral balance in human walking. J Biomech. 2000;33(11):1433–40.PubMedCrossRefGoogle Scholar
  35. 35.
    Zajac FE, Neptune RR, Kautz SA. Biomechanics and muscle coordination of human walking: part II: lessons from dynamical simulations and clinical implications. Gait Posture. 2003;17(1):1–17.PubMedCrossRefGoogle Scholar
  36. 36.
    Khanna I, Roy A, Rodgers MM, Krebs HI, MacKo RM, Forrester LW. Effects of unilateral robotic limb loading on gait characteristics in subjects with chronic stroke. J Neuroeng Rehabil. 2010;7(1):23.PubMedCrossRefGoogle Scholar
  37. 37.
    Ferris DP, Czerniecki JM, Hannaford B. An ankle-foot orthosis powered by artificial pneumatic muscles. J Appl Biomech. 2005;21(2):189–97.PubMedGoogle Scholar
  38. 38.
    Veneman JF, Ekkelenkamp R, Kruidhof R, van der Helm FCT, van der Kooij H. A series elastic- and Bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int J Robot Res. 2006;25(3):261–81.CrossRefGoogle Scholar
  39. 39.
    Vallery H, Ekkelenkamp R, van der Kooij H, Buss M. Passive and accurate torque control of series elastic actuators. Paper presented at: Proceedings of IROS 2007 – IEEE/RSJ international conference on intelligent robots and systems. San Diego; 2007.Google Scholar
  40. 40.
    Emken JL, Benitez R, Reinkensmeyer DJ. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed. J Neuroeng Rehabil. 2007;4:8.PubMedCrossRefGoogle Scholar
  41. 41.
    Emken JL, Harkema SJ, Beres-Jones JA, Ferreira CK, Reinkensmeyer DJ. Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury. IEEE Trans Bio-med Eng. 2008;55(1):322–34.CrossRefGoogle Scholar
  42. 42.
    Duschau-Wicke A, Von Zitzewitz J, Caprez A, Lunenburger L, Riener R. Path control: a method for patient-cooperative robot-aided gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2010;18(1):38–48.PubMedCrossRefGoogle Scholar
  43. 43.
    McGowan CP, Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: adaptations to altered mechanical demands. J Biomech. 2010;43(3):412–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: a simulation study. J Biomech. 2009;42(9):1282–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Van Asseldonk EHF, Ekkelenkamp R, Veneman JF, van der Helm FCT, van der Kooij H. Selective control of a subtask of walking in a robotic gait trainer (LOPES). Paper presented at: Proceedings of ICORR 2007 – IEEE international conference on rehabilitation robotics. Noordwijk; 2007.Google Scholar
  46. 46.
    van Asseldonk EHF, Koopman B, Buurke JH, Simons CD, van der Kooij H. Selective and adaptive robotic support of foot clearance for training stroke survivors with stiff knee gait. Paper presented at: Proceedings of ICORR 2009 – IEEE international conference on rehabilitation robotics.Kyoto; 2009.Google Scholar
  47. 47.
    Van Asseldonk EHF, Veneman JF, Ekkelenkamp R, Buurke JH, Van der Helm FCT, Van der Kooij H. The effects on kinematics and muscle activity of walking in a robotic gait trainer during zero-force control. IEEE Trans Neural Syst Rehabil Eng. 2008;16:360–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Van Hedel HJ, Tomatis L, Muller R. Modulation of leg muscle activity and gait kinematics by walking speed and bodyweight unloading. Gait Posture. 2006;24(1):35–45.PubMedCrossRefGoogle Scholar
  49. 49.
    Threlkeld AJ, Cooper LD, Monger BP, Craven AN, Haupt HG. Temporospatial and kinematic gait alterations during treadmill walking with body weight suspension. Gait Posture. 2003;17(3):235–45.PubMedCrossRefGoogle Scholar
  50. 50.
    Frey M, Colombo G, Vaglio M, Bucher R, Jorg M, Riener R. A novel mechatronic body weight support system. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):311–21.PubMedCrossRefGoogle Scholar
  51. 51.
    Van der Kooij H, Koopman B, Van Asseldonk EHF. Body weight support by virtual model control of a impedance controlled exoskeleton (LOPES) for gait training. Paper presented at: Proceedings of EMBS 2008. 30th annual international conference of the IEEE engineering in medicine and biology society. Vancouver; 20–24 Aug 2008.Google Scholar

Copyright information

© Springer-Verlag London Limited 2012

Authors and Affiliations

  • Edwin H. F. van Asseldonk
    • 1
    Email author
  • Herman van der Kooij
    • 1
    • 2
  1. 1.Department of Biomechanical EngineeringUniversity of TwenteEnschedeThe Netherlands
  2. 2.Department of Biomechanical EngineeringDelft University of TechnologyEnschedeThe Netherlands

Personalised recommendations