HIV Infection: A Cellular Approach

  • J. N. Weber


The human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2) are RNA viruses which belong to the lentivirus group of the retrovirus family (Weiss, 1985). In common with other members of this group which infect animals (visna/maedi virus, equine infectious anaemia virus, caprine arthritis/encephalitis virus), HIV is a non-transforming virus (that is, not directly oncogenic) which replicates through the generation of a proviral DNA intermediate by the action of the retroviral enzyme RNA-directed DNA polymerase (reverse transcriptase, RT). HIV is a virus capable of causing lysis in infected cells. There is a visible cytopathic effect in vitro, which can be used for assays of HIV infectivity. In vivo, a persistent infection is established following integration of proviral DNA into the host genome. Infection lasts for the life of the cell, and after sufficient cells are infected, infection lasts for the life of the host. All retroviral infections appear to be persistent.


Human Immunodeficiency Virus Simian Immunodeficiency Virus African Green Monkey Equine Infectious Anaemia Virus Human Immunodeficiency Virus Replication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bangham CR, McMichael AJ. (1990) Virology: nosing ahead in the cold war. Nature 344: 16.PubMedCrossRefGoogle Scholar
  2. Cheng-Mayer C, Rutka JT, Rosenblum ML et al. (1985) Human immunodeficiency virus can productively infect cultured human glial cells. Proc Natl Acad Sci USA 84: 3526–30.CrossRefGoogle Scholar
  3. Dalgliesh AG, Beverley PCL, Clapham PR et al. (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:767–8.CrossRefGoogle Scholar
  4. Daniel MD, Letvin NL, King NW et al. (1985) Isolation of T-cell tropic HTLV-III-like retrovirus from macaques. Science 228:1201–4.PubMedCrossRefGoogle Scholar
  5. Daniel MD, Li Y, Naidu YM et al. (1988) Simian immunodeficiency virus from African green monkeys. J Virol 62:4123–8.PubMedGoogle Scholar
  6. Debouck C, Gorniak JG, Strickler JE et al. (1987) Human immunodeficiency virus protease expressed in Escherichia coli exhibits autoprocessing and specific maturation of the gag precursor. Proc Natl Acad Sci USA 84:8903–6.PubMedCrossRefGoogle Scholar
  7. Desrosiers RC. (1988) Simian immunodeficiency viruses. Annu Rev Microbiol 42:607–25.PubMedCrossRefGoogle Scholar
  8. Evans LA, Levy JA. (1989) Characteristics of HIV infection and pathogenesis. Biochim Biophys Acta 989:237–54.PubMedGoogle Scholar
  9. Fukasawa M, Miura T, Hasegawa A et al. (1988) Sequence of simian immunodeficiency virus from African green monkey, a new member of the HIV/SIV group. Nature 333:457–61.PubMedCrossRefGoogle Scholar
  10. Gardner MB, Luciw PA. (1988) Simian immunodeficiency viruses and their relationship to the human immunodeficiency viruses. AIDS 2 (suppl 1):s3–10.PubMedCrossRefGoogle Scholar
  11. Gelderblom HR, Hausmann EH, Ozel M et al. (1987) Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156: 171–6.PubMedCrossRefGoogle Scholar
  12. Guy B, Kieny MP, Riviere Y et al. (1987) Nature 330:266–9.PubMedCrossRefGoogle Scholar
  13. Haseltine WA, Wong-Staal F. (1988) The molecular biology of the AIDS virus. Sci Am 259:52–62.PubMedCrossRefGoogle Scholar
  14. Hauber J, Perkins A, Heimer EP et al. (1987) Transactivation of human immunodeficiency virus gene expression is mediated by nuclear events. Proc Natl Acad Sci USA 84:6364–8.PubMedCrossRefGoogle Scholar
  15. Kestler H, Kodama T, Ringer D et al. (1990) Induction of AIDS in rhesus macaques by molecularly cloned SIV. Science 248: 1109–128PubMedCrossRefGoogle Scholar
  16. Klatzmann D, Champagne E, Chamaret S et atl. (1984a) Tlymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312:767–8.CrossRefGoogle Scholar
  17. Klatzmann O, Champagne E, Chamaret S et at. (1984b) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 225:59–63.Google Scholar
  18. Luciw PA, ChengMayer C, Levy JA. (1987) Mutational analysis of the human immunodeficiency virus: the orf-B region down-regulates virus replication. Proc Natl Acad Sci USA 84:1434–8PubMedCrossRefGoogle Scholar
  19. Maddon PJ, Dalgleish AG, McDougal JS et at. (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–48.PubMedCrossRefGoogle Scholar
  20. Mulder C. (1988) Human AIDS virus is not from monkeys. Nature 333:396.PubMedCrossRefGoogle Scholar
  21. Nabei G, Baltimore D. (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T-cells. Nature 326:711–13.CrossRefGoogle Scholar
  22. O’Brien WA, Koyanagi Y, Namazie A et at. (1990) HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp…120 outside the CD4-binding domain. Nature 348:69–73.PubMedCrossRefGoogle Scholar
  23. Pang S, Koyanagi Y, Miles S et at. (1990) High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature 343:85–9.PubMedCrossRefGoogle Scholar
  24. Peeters M, Honore C, Huet T et at. (1989) Isolation and partial characteriz;ation of an HIV related virus occurring naturally in chimpanzees in Gabon. AIDS 3:625–31.PubMedCrossRefGoogle Scholar
  25. Peterlin BM, Luciw PA. (1988) Molecular biology of HIV. AIDS 2 (suppl 1): 829–40.Google Scholar
  26. Rosenburg Z, Fauci A. (1990) Cytokine induction of HIV expression. Immunol Today 11:176.CrossRefGoogle Scholar
  27. Saag MS, Hahn BH, Gibbons J et at. (1988) Extensive The Neuropathology of HIV Infection variation of human immunodeficiency virus type-1 in vivo. Nature 334:440–4.PubMedCrossRefGoogle Scholar
  28. Schneider J, Hunsmann G. (1988) Simian lentiviruses: the SIV group. AIDS 2:1–9.PubMedCrossRefGoogle Scholar
  29. Sodroski J, Rosen C, Wong-Staal F et at. (1985) Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science 227: 171–3.PubMedCrossRefGoogle Scholar
  30. Sodroski J, Goh WC, Rosen C et at. (1986) Replicative and cytopathic potential of HTLV-III/LAV with sor gene deletions. Science 231: 1549–53.PubMedCrossRefGoogle Scholar
  31. Strebel K, Klimkait T, Martin MA. (1988) A novel gene of HIV-1, VPU, and its 16-kilodalton product. Science 241: 1221–3.PubMedCrossRefGoogle Scholar
  32. Terwilliger E, Sodroski JG, Rosen CA et at. (1986) Effects of mutations within the 31 orf open reading frame region of human T-cell Iymphotropic virus type III (HTLV-III/LAV on replication and cytopathogenicity. J Virol 60:754–60.PubMedGoogle Scholar
  33. Terwilliger E, Berghoff R, Sia R et at. (1987) The art gene product of human immunodeficiency virus is required for replication. J Virol 62:655–8.Google Scholar
  34. Wain-Hobson S. (1989) HIV genome variability in vivo. AIDS 3 (suppl 1):s13–18.PubMedCrossRefGoogle Scholar
  35. Weber IN, Jeffries DJ. (1990) Humoral immune responses to HIV. In: Gottlieb M, Pinching AJ, Jeffries DJ, eds. Current opinion on HIV. A Wiley; London, 1990.Google Scholar
  36. Weber IN, Clapham PR, Weiss RA et at. (1987) Human immunodeficiency virus infection in two cohorts of homosexual men: neutralising sera and association of antigag antibody with prognosis. Lancet i:119–22.CrossRefGoogle Scholar
  37. Weiss R. (1985) Human T-cell retroviruses. In: Weiss Retai, eds. RNA tumor viruses, 2nd edn, vol 2, Supplements and appendices. Cold Spring Harbor Laboratory: New York, 405–85.Google Scholar

Copyright information

© Springer-Verlag London Limited 1993

Authors and Affiliations

  • J. N. Weber

There are no affiliations available

Personalised recommendations