Learning Urban Cellular Automata In A Real World

The Case Study Of Rome Metropolitan Area
  • Antonio Colonna
  • Vittorio Di Stefano
  • Silvana Lombardo
  • Lorenzo Papini
  • Giovanni A. Rabino

Abstract

Learning C.A. is a cellular automaton coupled with a classifier system, in order to discover the transition rules for the automaton from experimental data. This new model is applied for the first time to a real urban system. The paper discusses the problem of applying C.A. to an urban system in a realistic way, and it presents the first results obtained with the model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Papini L., Rabino G.A. Urban Cellular Automata: an evolutionary prototype, in (Bandini and Mauri eds.) ACM ‘86. Proceedings of the Second Conference on Cellular Automata for Research and Industry. Springer, Berlin, 1997, 147–157.Google Scholar
  2. 2.
    Klosterman R.E., Large-scale Urban Models: Retrospect and Prospect. Journal of American Planning Association, 1994, 60, 3–6.CrossRefGoogle Scholar
  3. 3.
    Rabino G.A., Tesi di pianificazione urbanistica. Atti del Seminario Internazionale “La città e le sue scienze”, AISRe, Perugia, 1995, 46–66.Google Scholar
  4. 4.
    Lombardo S.) Note sulla valutazione dell’incertezza nei sistemi complessi. Atti del Seminario Internazionale “La città e le sue scienze”, AISRe, Perugia, 1995, 86–102.Google Scholar
  5. 5.
    Occelli S., Rabino G.A., Un modello urbano operativo per la città post-fordista. Atti della XVIII Conferenza Italiana di Scienze Regionali, AISRe, Siracusa, 1997, 435–455.Google Scholar
  6. 6.
    Allen P.M., A dynamic model of growth in a central place system. Geographical Analysis, 1979, 11, 256–272.CrossRefGoogle Scholar
  7. 7.
    White R, Engelen G., Uljee, Cellular automata modelling of fractal urban land use patterns: forecasting change for planning applications. paper presented at 8° European Colloquium on Theoretical and Quantitative Geography, Budapest, 1993Google Scholar
  8. 8.
    Sanders L., Pumain D., Mathian H., Guerin-Pace F., Bura S., SIMPOP: a multi-agent system for the study of urbanism. Environment and Planning B, 1997, 24, 287–305.CrossRefGoogle Scholar
  9. 9.
    Besussi E., Cecchini A., Artificial Worlds and Urban Studies, DAEST n.1, Venezia., 1996Google Scholar
  10. 10.
    Serra R, Zanarini, G., Complex Systems and Cognitive Processes. Springer Verlag, Berlino, 1990.Google Scholar
  11. 11.
    Giangrande A., Lombardo S., Mortola E., Calibratura del modello di Lowry estesa alla variabili di attrazione zonale: applicazione ad una sub-area dell’Alto Lazio. Atti delle Giornate di Lavoro AIRO. Parma, 1977, 731–751.Google Scholar
  12. 12.
    Batty M., Xie Y., From cells to cities. Environment and Planning B, 21, 1994, 531–548.Google Scholar
  13. 13.
    Batty M., Couclelis H., Eichen M., Special issue: Urban systems as cellular automata. Environment and Planning B, 1997, 24, 159–164.Google Scholar
  14. 14.
    Batty M., Xie Y., Possible urban automata. Environment and Planning B, 1997, 24, 175–192.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1998

Authors and Affiliations

  • Antonio Colonna
    • 1
  • Vittorio Di Stefano
    • 1
  • Silvana Lombardo
    • 1
  • Lorenzo Papini
    • 2
  • Giovanni A. Rabino
    • 2
  1. 1.University of Rome “La Sapienza”RomeItaly
  2. 2.Polytechnic of MilanMilanItaly

Personalised recommendations