Advertisement

Systems Applications for All-Optical Semiconductor Switching Devices

  • W. Pieper
  • E. Jahn
  • M. Eiselt
  • R. Ludwig
  • R. Schnabel
  • A. Ehrhardt
  • H. J. Ehrke
  • H. G. Weber

Abstract

The authors report on all-optical switching devices based on semiconductor laser amplifiers (SLA) in applications for optical time division multiplexing. These applications include demultiplexer, add/drop multiplexer and clock recovery. The nonlinear processes in the SLA used for switching are four-wave mixing and cross-phase modulation. Particular attention is paid to recently developed monolithically integrated interferometric switching devices.

Keywords

Control Pulse Switching Device Fiber Delay Line Clock Recovery Data Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Bowers, A.K. Petersen, M. Rodwell, N. Dagli, M. Melliar-Smith, A. Shakouri, K. Runge, B. Beccue, K.C. Wang: High speed TDM-systems, Photonics in Switching 1996, Sendai, Japan, April 1996, paper PWD1.Google Scholar
  2. [2]
    T. Morioka, H. Takara, S. Kawanishi, T. Kitoh, M. Saruwatari: Error-free 500 Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses, Electron. Lett, Vol. 32, No. 9 (1996), pp. 833–834.CrossRefGoogle Scholar
  3. [3]
    S. Kawanishi: Very high-speed optical transmission technology.Google Scholar
  4. [4]
    Optoelectronics-Devices and Technologies, Vol. 10, No. 4 (1995) pp. 447–460.Google Scholar
  5. [5]
    A.D. Ellis, D.M. Patrick, D. Flannery, R.J. Manning, D.A.O. Davies, D.M. Spirit: Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes, Journ. Lightw. Techn. Vol. 13, No. 5, (1995), pp. 761–770.CrossRefGoogle Scholar
  6. [6]
    R. Ludwig, W. Pieper, R. Schnabel, S. Diez, H.G. Weber. Four-wave mixing in semiconductor laser amplifiers: Applications for optical communication system, Fiber and Integrated Optics, Vol. 15, No. 3 (1996), pp. 211–223.CrossRefGoogle Scholar
  7. [7]
    D.M. Spirit, L.C. Blank: Optical time division multiplexing for future high-capacity network applications, BT Technol. J. Vol. 11, No. 2 (1993), pp. 35–45.Google Scholar
  8. [8]
    T. Morioka, S. Kawanishi, H. Takara, M. Saruwatari: Multiple output, 100 Gbit/s all-optical demultiplexer based on multi-channel four-wave mixing pumped by a linearly chirped square pulse, Electron. Lett. 30 (1994), pp. 1959–1960.CrossRefGoogle Scholar
  9. [9]
    R. Ludwig, A. Ehrhardt: Turn-key-ready wavelength-, repetition rate-, and pulsewidth-tunable femtosecond hybrid modelocked laser. Electron. Lett., Vol. 31, No. 14(1995), pp. 1165–1167.Google Scholar
  10. [10]
    H. Takara, S. Kawanishi, M. Sarawatari: 20 GHz transform-limited optical pulse generation and bit-error-free operation using a tunable, actively modelocked Erdopedfibre ring laser, Electron. Lett. Vol. 21, No. 13 (1993), pp. 1149–1150.CrossRefGoogle Scholar
  11. [11]
    A. D’Ottavi, E. Iannone, A. Mecozzi, S. Scotti, P. Spano, J. Landreau, A. Ougazzaden, J. Bouley: Investigation of carrier heating and spectral hole burning in semiconductor amplifiers by highly nondegenerate four-wave mixing, Appl. Phys. Lett., Vol 64, No. 19, pp. 2492–2494, 1994.CrossRefGoogle Scholar
  12. [12]
    [11 R. Schnabel, W. Pieper, A. Ehrhardt, M. Eiselt, H.G. Weber: Wavelength Conversion and Switching of High Speed Data Signals Using Semiconductor Laser Amplifiers, Electron. Lett., Vol. 29, No. 23, pp. 2047–2048, 1993.Google Scholar
  13. [13]
    D. Nesset, M. Tatham, D. Cotter: All-optical AND gate operating on 10 Gbit/s signals at the same wavelength using four-wave mixing in a semiconductor laser amplifier, Electron. Lett., Vol. 31, No. 11, pp. 896–897, 1995.CrossRefGoogle Scholar
  14. [14]
    M. Eiselt: Optimum pump pulse selection for demultiplexer application of four-wave mixing in semiconductor laser amplifiers, IEEE Photon. Technol. Lett., Vol. 7, pp. 1312–1314, 1995.CrossRefGoogle Scholar
  15. [15]
    M. Shtaif, G. Eisenstein: Analytical solution of wave mixing between short optical pulses in a semiconductor laser amplifier, Appl. Phys. Lett., Vol 66, pp. 1458–1460, 1995.CrossRefGoogle Scholar
  16. [16]
    R. Ludwig, G. Raybon: BER measurements of frequency converted signals using four-wave mixing in a semiconductor laser amplifier at 1, 2.5, 5 and 10 Gbit/s, Electron. Lett, Vol. 30, No. 4, pp. 338–339, 1994.Google Scholar
  17. [17]
    R. Ludwig, G. Raybon: All-Optical Demultiplexing Using Ultrafast Four-Wave Mixing in a Semiconductor Laser Amplifier at 20 Gbit/s, 19th European Conference on Optical Communication, ECOC, Montreux, Techn. Digest, pp. 57–60, 1993.Google Scholar
  18. [18]
    S.Kawanishi, T. Morioka, O. Kamatani, H. Takara, J. Jacob, M. Saruwatari: 100 Gbit/s all-optical demultiplexing using four-wave mixing in a travelling wave laser diode amplifier, Electron. Lett., Vol. 30, No. 12, pp. 981–982, 1994.CrossRefGoogle Scholar
  19. [19]
    T. Morioka, H. Takara, S. Kawanishi, K. Uchiyama, M. Saruwatari: Polarisation-independent all-optical demultiplexing up to 200 Gbit/s using four-wave mixing in a semiconductor laser amplifier, Electron. Lett., Vol. 32, No. 9, pp. 840–841, 1996.CrossRefGoogle Scholar
  20. [20]
    R. Schnabel, U. Hilbk, Th. Hermes, P. Meissner, Cv. Helmolt, K. Magari, F. Raub, W. Pieper, F.J. Westphal, R. Ludwig, L. Küller, H.G. Weber: Polarisation Insensitive Frequency Conversion of a 10-Channel OFDM Signal using Four-Wave-Mixing in a Semiconductor Laser Amplifier, IEEE Photon. Technol. Lett., Vol. 6, No. 1, pp. 56–58, 1994.Google Scholar
  21. [21]
    R. Jopson, R. Tench: Polarisation-Independent Phase Conjugation of Lightwave Signals, Electron. Lett, Vol. 29, No. 25, pp. 2216–2217, 1993.CrossRefGoogle Scholar
  22. [22]
    M. Eiselt: Optical loop mirror with semiconductor laser amplifier, Electron. Lett., Vol. 28, No. 16 (1992), pp. 1505–1507.CrossRefGoogle Scholar
  23. [23]
    M. Eiselt, W. Pieper, H.G. Weber: SLALOM: Semiconductor laser amplifier in a loop mirror, Journ. Lightw. Techn., Vol. 13, No. 10 (1995), pp. 2099–2112.CrossRefGoogle Scholar
  24. [24]
    M. Eiselt, W. Pieper, H.G. Weber: All-optical demultiplexing with a semiconductor laser amplifier in a loop mirror, Electron. Lett., Vol. 29, No. 13, (1993) pp. 1167–1168.CrossRefGoogle Scholar
  25. [25]
    J.P. Sokoloff, I. Glesk, P.R. Prucnal: Performance of a 50 Gbit/s optical time domain multiplexed system using a terahertz optical asymmetric demultiplexer, IEEE Photon Technol. Lett, Vol. 6, No. 1, (1994), pp. 98–100.CrossRefGoogle Scholar
  26. [26]
    J.P. Sokoloff, P.R. Prucnal, I. Glesk, M. Kane: A terahertz optical asymmetric demultiplexer, IEEE Photonics Technol. Lett., Vol. 5, No. 7 (1993), pp. 787–790.CrossRefGoogle Scholar
  27. [27]
    R. J. Manning, D.A. Davies: Three-wavelength device for all-optical signal processing, Optics Letters, Vol. 19, No. 12 (1994), pp. 889–891.CrossRefGoogle Scholar
  28. [28]
    A.D. Ellis, D.M. Spirit: Compact 40 Gbit/s optical demultiplexer using a GalnAsP optical amplifier, Electron. Lett., Vol. 29, No. 24 (199), pp. 2115–2116.Google Scholar
  29. [29]
    K. Suzuki, K. Iwatsuki, S. Nishi, M. Saruwatari: Error-free demultiplexing of 160 Gbit/s pulse signal using optical loop mirror including semiconductor laser amplifier, Electron. Lett, Vol. 30, No. 18 (1994), pp. 1501–150.CrossRefGoogle Scholar
  30. [30]
    E. Jahn, N. Agrawal, M. Arbeit, H.J. Ehrke, D. Franke, R. Ludwig, W. Pieper, H.G. Weber, CM. Weinert: 40 Gbit/s all-optical demultiplexing using a monolithically integrated Mach-Zehnder Interferometer with semiconductor laser amplifiers, Electron. Lett, Vol. 31, No. 21 (1995), pp. 1857–1858.Google Scholar
  31. [31]
    E. Jahn, N. Agrawal, HJ. Ehrke, R. Ludwig, W. Pieper, H.G. Weber: Monolithically integrated asymmetric Mach-Zehnder Interferometer as a 20 Gbit/s all-optical Add/Drop Multiplexer for OTDM systems, Electron. Lett., Vol. 32, No. 3 (1996), pp. 216–217.Google Scholar
  32. [32]
    R. Ludwig, A. Ehrhardt, W. Pieper, E. Jahn, N. Agrawal, H.J. Ehrke, L. Küller, H.G. Weber: 40 Gbit/s demultiplexing experiment with a 10 GHz all-optical clock recovery using a modelocked semiconductor laser, Electron. Lett., Vol. 32, No. 4 (1996), pp. 27–329.CrossRefGoogle Scholar
  33. [33]
    E. Jahn, N. Agrawal, W. Pieper, H.J. Ehrke, D. Franke, W. Fürst, CM. Weiner: Monolithically integrated nonlinear Sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer, Electron. Lett., Vol. 2, No. 9(1996), pp. 782–784.Google Scholar
  34. [34]
    K.I. Kang, I. Glesk, T.G. Chang, P.R. Prucnal, R.K. Boncek:.Google Scholar
  35. [35]
    Demonstration of all-optical Mach-Zehnder demultiplexer, Electron. Lett., Vol. 31, No. 9 (1995), pp. 749–750.Google Scholar
  36. [36]
    D.J. Derickson, R.J. Helkey, A. Mar, J.R. Karin, J.G. Wasserbauer, J. Bowers: Short pulse generation using multisegment mode-locked semiconductor lasers, IEEE J. Quzantum Electron. Vol. 28 (1992), pp. 2186–2201.CrossRefGoogle Scholar
  37. [37]
    E. Bodtker, J.E. Bowers: Techniques for optical demultiplexing in high bit rate communication systems, J. Lightwave Technol., 1995, LT-13 (9), pp. 1809–1814.Google Scholar
  38. [38]
    N. Agrawal, E. Jahn, W. Pieper, H.J. Ehrke: Optical signal processing using monolithically integrated semiconductor laser amplifier structures, Optical Amplifiers and Their Applications, Monterey, California, Techn. Dig., pp. 98–101 (1996).Google Scholar

Copyright information

© Springer-Verlag London Limited 1997

Authors and Affiliations

  • W. Pieper
    • 1
  • E. Jahn
    • 1
  • M. Eiselt
    • 1
  • R. Ludwig
    • 1
  • R. Schnabel
    • 1
  • A. Ehrhardt
    • 1
  • H. J. Ehrke
    • 1
  • H. G. Weber
    • 1
  1. 1.Heinrich-Hertz-Institut für Nachrichtentechnik Berlin GmbH Einsteinufer 37BerlinGermany

Personalised recommendations